Predictive Intelligence in Medicine
5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
Herausgegeben:Rekik, Islem; Adeli, Ehsan; Park, Sang Hyun; Cintas, Celia
Predictive Intelligence in Medicine
5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings
Herausgegeben:Rekik, Islem; Adeli, Ehsan; Park, Sang Hyun; Cintas, Celia
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.
The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
Andere Kunden interessierten sich auch für
- Predictive Intelligence in Medicine39,99 €
- Predictive Intelligence in Medicine50,99 €
- Artificial Neural Networks and Machine Learning ¿ ICANN 202239,99 €
- Artificial Neural Networks and Machine Learning ¿ ICANN 202239,99 €
- Artificial Neural Networks and Machine Learning ¿ ICANN 202239,99 €
- Advancements in Smart Computing and Information Security70,99 €
- Artificial Intelligence85,99 €
-
-
-
This book constitutes the proceedings of the 5th International Workshop on Predictive Intelligence in Medicine, PRIME 2022, held in conjunction with MICCAI 2022 as a hybrid event in Singapore, in September 2022.
The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
The 19 papers presented in this volume were carefully reviewed and selected for inclusion in this book. The contributions describe new cutting-edge predictive models and methods that solve challenging problems in the medical field for a high-precision predictive medicine.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 13564
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-16918-2
- 1st ed. 2022
- Seitenzahl: 228
- Erscheinungstermin: 21. September 2022
- Englisch
- Abmessung: 235mm x 155mm x 13mm
- Gewicht: 353g
- ISBN-13: 9783031169182
- ISBN-10: 3031169182
- Artikelnr.: 65001607
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 13564
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-16918-2
- 1st ed. 2022
- Seitenzahl: 228
- Erscheinungstermin: 21. September 2022
- Englisch
- Abmessung: 235mm x 155mm x 13mm
- Gewicht: 353g
- ISBN-13: 9783031169182
- ISBN-10: 3031169182
- Artikelnr.: 65001607
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning
Federated Time-dependent GNN Learning from Brain Connectivity Data with Missing Timepoints.- Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing.- Multi-Tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas.- Multiple Instance Neuroimage Transformer.- Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach.- Mixup augmentation improves age prediction from T1-weighted brain MRI scans.- Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning.- MISS-Net: Multi-view contrastive transformer network for MCI stages prediction using brain 18F-FDG PET imaging.- TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation.- Opportunistic hip fracture risk prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study.- Weakly-Supervised TILs Segmentation based on Point Annotations using Transfer Learning with Point Detector and Projected-Boundary Regressor.- Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage.- Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-Task Learning on Imaging and Tabular Data.- Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts.- Investigating the Predictive Reproducibility of Federated Graph Neural Networks using Medical Datasets.- Learning subject-specific functional parcellations from cortical surface measures.- A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images.- Predicting Brain Multigraph Population From a Single Graph Template for Boosting One-Shot Classification.- Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using Graph Neural Networks and Meta-Learning