89,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

Aimed at statisticians and machine learners, this retooling of statistical theory asserts that high-quality prediction should be the guiding principle of modeling and learning from data, then shows how. The fully predictive approach to statistical problems outlined embraces traditional subfields and 'black box' settings, with computed examples.

Produktbeschreibung
Aimed at statisticians and machine learners, this retooling of statistical theory asserts that high-quality prediction should be the guiding principle of modeling and learning from data, then shows how. The fully predictive approach to statistical problems outlined embraces traditional subfields and 'black box' settings, with computed examples.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Bertrand S. Clarke is Chair of the Department of Statistics at the University of Nebraska, Lincoln. His research focuses on predictive statistics and statistical methodology in genomic data. He is a fellow of the American Statistical Association, serves as editor or associate editor for three journals, and has published numerous papers in several statistical fields as well as a book on data mining and machine learning.