Now in its second edition, this book has been thoroughly updated to provide a current overview of the theoretical and experimental concepts needed to understand and work in nano-optics. This is an invaluable reference for graduate students entering the field, as well as for researchers and course teachers.
Now in its second edition, this book has been thoroughly updated to provide a current overview of the theoretical and experimental concepts needed to understand and work in nano-optics. This is an invaluable reference for graduate students entering the field, as well as for researchers and course teachers.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Lukas Novotny is Professor of Optics and Physics at the University of Rochester where he heads the Nano-Optics Research Group at the Institute of Optics. He received his Ph.D. from the Swiss Federal Institute of Technology in Switzerland and later joined the Pacific Northwest National Laboratory (Washington, USA) as a research fellow, working in the Chemical Structure and Dynamics Group. In 1999, he joined the faculty of the Institute of Optics at the University of Rochester and developed a course on nano-optics which has been taught several times at the graduate level and which forms the basis of this textbook. His general interest is in nanoscale light-matter interactions ranging from questions in solid-state physics to biophysics.
Inhaltsangabe
Preface; 1. Introduction; 2. Theoretical foundations; 3. Propagation and focusing of optical fields; 4. Resolution and localization; 5. Nanoscale optical microscopy; 6. Near-field optical probes; 7. Probe-sample distance control; 8. Optical interactions; 9. Quantum emitters; 10. Dipole emission near planar interfaces; 11. Photonic crystals, resonators, and cavity optomechanics; 12. Surface plasmons; 13. Optical antennas; 14. Forces in confined fields; 15. Fluctuation-induced interactions; 16. Theoretical methods in nano-optics; Appendices; Index.
Preface; 1. Introduction; 2. Theoretical foundations; 3. Propagation and focusing of optical fields; 4. Resolution and localization; 5. Nanoscale optical microscopy; 6. Near-field optical probes; 7. Probe-sample distance control; 8. Optical interactions; 9. Quantum emitters; 10. Dipole emission near planar interfaces; 11. Photonic crystals, resonators, and cavity optomechanics; 12. Surface plasmons; 13. Optical antennas; 14. Forces in confined fields; 15. Fluctuation-induced interactions; 16. Theoretical methods in nano-optics; Appendices; Index.
Preface; 1. Introduction; 2. Theoretical foundations; 3. Propagation and focusing of optical fields; 4. Resolution and localization; 5. Nanoscale optical microscopy; 6. Near-field optical probes; 7. Probe-sample distance control; 8. Optical interactions; 9. Quantum emitters; 10. Dipole emission near planar interfaces; 11. Photonic crystals, resonators, and cavity optomechanics; 12. Surface plasmons; 13. Optical antennas; 14. Forces in confined fields; 15. Fluctuation-induced interactions; 16. Theoretical methods in nano-optics; Appendices; Index.
Preface; 1. Introduction; 2. Theoretical foundations; 3. Propagation and focusing of optical fields; 4. Resolution and localization; 5. Nanoscale optical microscopy; 6. Near-field optical probes; 7. Probe-sample distance control; 8. Optical interactions; 9. Quantum emitters; 10. Dipole emission near planar interfaces; 11. Photonic crystals, resonators, and cavity optomechanics; 12. Surface plasmons; 13. Optical antennas; 14. Forces in confined fields; 15. Fluctuation-induced interactions; 16. Theoretical methods in nano-optics; Appendices; Index.
Rezensionen
'The reader will appreciate its scope and depth, as it covers topics ranging from resolution and microscopy to metamaterials and optical antennas. This book provides an integrated approach to the entire field, and the format breaks the material into accessible sub-units. The physical and mathematical rigor is high, and approximations and limitations of the theory and the experimental devices are clearly stated. The material is highly recommended for a graduate course.' Barry R. Masters, Optics and Photonics News
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826