Kitai
Principles of Solar Cells, LEDs
Kitai
Principles of Solar Cells, LEDs
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book will cover the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the PN junction at the senior undergraduate level. It will include: * Review of semiconductor physics * Introduction to PN diodes * The solar cell * Physics of efficient conversion of sunlight into electrical energy * Semiconductor solar cell materials and device physics * Advanced solar cell materials and devices * The light emitting diode * Physics of efficient conversion of electrical energy into light * Semiconductor light emitting…mehr
Andere Kunden interessierten sich auch für
- Mikhail BaklanovAdvanced Interconnects for ULSI Technology261,99 €
- Handbook of 3D Integration150,99 €
- Handbook of 3D Integration155,99 €
- Yaguang LianSemiconductor Microchips and Fabrication139,99 €
- Chris MackFundamental Principles of Optical77,99 €
- Julian RandallDesigning Indoor Solar Products191,99 €
- Kevin F. BrennanTheory of Modern Electronic Semiconductor Devices214,99 €
-
-
-
The book will cover the two most important applications of semiconductor diodes - solar cells and LEDs - together with quantitative coverage of the physics of the PN junction at the senior undergraduate level. It will include: * Review of semiconductor physics * Introduction to PN diodes * The solar cell * Physics of efficient conversion of sunlight into electrical energy * Semiconductor solar cell materials and device physics * Advanced solar cell materials and devices * The light emitting diode * Physics of efficient conversion of electrical energy into light * Semiconductor light emitting diode materials and device physics * Advanced light emitting diode materials and devices
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons / Wiley
- Artikelnr. des Verlages: 1W444318340
- Seitenzahl: 318
- Erscheinungstermin: 30. August 2011
- Englisch
- Abmessung: 250mm x 175mm x 22mm
- Gewicht: 759g
- ISBN-13: 9781444318340
- ISBN-10: 1444318349
- Artikelnr.: 33240157
- Verlag: John Wiley & Sons / Wiley
- Artikelnr. des Verlages: 1W444318340
- Seitenzahl: 318
- Erscheinungstermin: 30. August 2011
- Englisch
- Abmessung: 250mm x 175mm x 22mm
- Gewicht: 759g
- ISBN-13: 9781444318340
- ISBN-10: 1444318349
- Artikelnr.: 33240157
ADRIAN KITAI, Departments of Engineering Physics and Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
Introduction xi Acknowledgements xv 1 Semiconductor Physics 1 1.1
Introduction 2 1.2 The Band Theory of Solids 2 1.3 The Kronig-Penney Model
3 1.4 The Bragg Model 8 1.5 Effective Mass 8 1.6 Number of States in a Band
10 1.7 Band Filling 12 1.8 Fermi Energy and Holes 14 1.9 Carrier
Concentration 15 1.10 Semiconductor Materials 25 1.11 Semiconductor Band
Diagrams 26 1.12 Direct Gap and Indirect Gap Semiconductors 29 1.13
Extrinsic Semiconductors 35 1.14 Carrier Transport in Semiconductors 40
1.15 Equilibrium and Non-Equilibrium Dynamics 43 1.16 Carrier Diffusion and
the Einstein Relation 45 1.17 Quasi-Fermi Energies 48 1.18 The Diffusion
Equation 50 1.19 Traps and Carrier Lifetimes 53 1.20 Alloy Semiconductors
56 1.21 Summary 59 Suggestions for Further Reading 61 Problems 63 2 The PN
Junction Diode 69 2.1 Introduction 70 2.2 Diode Current 72 2.3 Contact
Potential 75 2.4 The Depletion Approximation 78 2.5 The Diode Equation 85
2.6 Reverse Breakdown and the Zener Diode 97 2.7 Tunnel Diodes 100 2.8
Generation/Recombination Currents 101 2.9 Ohmic Contacts, Schottky Barriers
and Schottky Diodes 104 2.10 Heterojunctions 113 2.11 Alternating Current
(AC) and Transient Behaviour 115 2.12 Summary 117 Suggestions for Further
Reading 118 Problems 119 3 Photon Emission and Absorption 123 3.1
Introduction to Luminescence and Absorption 124 3.2 Physics of Light
Emission 125 3.3 Simple Harmonic Radiator 128 3.4 Quantum Description 129
3.5 The Exciton 132 3.6 Two-Electron Atoms 135 3.7 Molecular Excitons 141
3.8 Band-to-Band Transitions 144 3.9 Photometric Units 148 3.10 Summary 152
Suggestions for Further Reading 153 Problems 155 4 The Solar Cell 159 4.1
Introduction 160 4.2 Light Absorption 162 4.3 Solar Radiation 164 4.4 Solar
Cell Design and Analysis 164 4.5 Thin Solar Cells 172 4.6 Solar Cell
Generation as a Function of Depth 176 4.7 Solar Cell Efficiency 179 4.8
Silicon Solar Cell Technology: Wafer Preparation 184 4.9 Silicon Solar Cell
Technology: Solar Cell Finishing 187 4.10 Silicon Solar Cell Technology:
Advanced Production Methods 191 4.11 Thin Film Solar Cells: Amorphous
Silicon 192 4.12 Telluride/Selenide/Sulphide Thin-Film Solar Cells 199 4.13
High-Efficiency Multijunction Solar Cells 200 4.14 Concentrating Solar
Systems 203 4.15 Summary 204 Suggestions for Further Reading 205 Problems
207 5 Light Emitting Diodes 215 5.1 Introduction 216 5.2 LED Operation and
Device Structures 217 5.3 Emission Spectrum 220 5.4 Non-Radiative
Recombination 221 5.5 Optical Outcoupling 223 5.6 GaAs LEDs 225 5.7
GaAs1-xPx LEDs 226 5.8 Double Heterojunction AlxGa1-xAs LEDs 228 5.9
AlGaInP LEDs 234 5.10 Ga1-xInxN LEDs 236 5.11 LED Structures for Enhanced
Outcoupling and Power Output 244 5.12 Summary 247 Suggestions for Further
Reading 248 Problems 249 6 Organic Semiconductors, OLEDs and Solar Cells
253 6.1 Introduction to Organic Electronics 254 6.2 Conjugated Systems 255
6.3 Polymer OLEDs 260 6.4 Small-Molecule OLEDs 266 6.5 Anode Materials 270
6.6 Cathode Materials 270 6.7 Hole Injection Layer 271 6.8 Electron
Injection Layer 272 6.9 Hole Transport Layer 272 6.10 Electron Transport
Layer 275 6.11 Light Emitting Material Processes 276 6.12 Host Materials
278 6.13 Fluorescent Dopants 279 6.14 Phosphorescent Dopants 283 6.15
Organic Solar Cells 283 6.16 Organic Solar Cell Materials 289 6.17 Summary
292 Suggestions for Further Reading 294 Problems 295 Appendix 1: Physical
Constants 301 Appendix 2: Properties of Semiconductor Materials 303
Appendix 3: The Boltzmann Distribution Function 305 Index 309
Introduction 2 1.2 The Band Theory of Solids 2 1.3 The Kronig-Penney Model
3 1.4 The Bragg Model 8 1.5 Effective Mass 8 1.6 Number of States in a Band
10 1.7 Band Filling 12 1.8 Fermi Energy and Holes 14 1.9 Carrier
Concentration 15 1.10 Semiconductor Materials 25 1.11 Semiconductor Band
Diagrams 26 1.12 Direct Gap and Indirect Gap Semiconductors 29 1.13
Extrinsic Semiconductors 35 1.14 Carrier Transport in Semiconductors 40
1.15 Equilibrium and Non-Equilibrium Dynamics 43 1.16 Carrier Diffusion and
the Einstein Relation 45 1.17 Quasi-Fermi Energies 48 1.18 The Diffusion
Equation 50 1.19 Traps and Carrier Lifetimes 53 1.20 Alloy Semiconductors
56 1.21 Summary 59 Suggestions for Further Reading 61 Problems 63 2 The PN
Junction Diode 69 2.1 Introduction 70 2.2 Diode Current 72 2.3 Contact
Potential 75 2.4 The Depletion Approximation 78 2.5 The Diode Equation 85
2.6 Reverse Breakdown and the Zener Diode 97 2.7 Tunnel Diodes 100 2.8
Generation/Recombination Currents 101 2.9 Ohmic Contacts, Schottky Barriers
and Schottky Diodes 104 2.10 Heterojunctions 113 2.11 Alternating Current
(AC) and Transient Behaviour 115 2.12 Summary 117 Suggestions for Further
Reading 118 Problems 119 3 Photon Emission and Absorption 123 3.1
Introduction to Luminescence and Absorption 124 3.2 Physics of Light
Emission 125 3.3 Simple Harmonic Radiator 128 3.4 Quantum Description 129
3.5 The Exciton 132 3.6 Two-Electron Atoms 135 3.7 Molecular Excitons 141
3.8 Band-to-Band Transitions 144 3.9 Photometric Units 148 3.10 Summary 152
Suggestions for Further Reading 153 Problems 155 4 The Solar Cell 159 4.1
Introduction 160 4.2 Light Absorption 162 4.3 Solar Radiation 164 4.4 Solar
Cell Design and Analysis 164 4.5 Thin Solar Cells 172 4.6 Solar Cell
Generation as a Function of Depth 176 4.7 Solar Cell Efficiency 179 4.8
Silicon Solar Cell Technology: Wafer Preparation 184 4.9 Silicon Solar Cell
Technology: Solar Cell Finishing 187 4.10 Silicon Solar Cell Technology:
Advanced Production Methods 191 4.11 Thin Film Solar Cells: Amorphous
Silicon 192 4.12 Telluride/Selenide/Sulphide Thin-Film Solar Cells 199 4.13
High-Efficiency Multijunction Solar Cells 200 4.14 Concentrating Solar
Systems 203 4.15 Summary 204 Suggestions for Further Reading 205 Problems
207 5 Light Emitting Diodes 215 5.1 Introduction 216 5.2 LED Operation and
Device Structures 217 5.3 Emission Spectrum 220 5.4 Non-Radiative
Recombination 221 5.5 Optical Outcoupling 223 5.6 GaAs LEDs 225 5.7
GaAs1-xPx LEDs 226 5.8 Double Heterojunction AlxGa1-xAs LEDs 228 5.9
AlGaInP LEDs 234 5.10 Ga1-xInxN LEDs 236 5.11 LED Structures for Enhanced
Outcoupling and Power Output 244 5.12 Summary 247 Suggestions for Further
Reading 248 Problems 249 6 Organic Semiconductors, OLEDs and Solar Cells
253 6.1 Introduction to Organic Electronics 254 6.2 Conjugated Systems 255
6.3 Polymer OLEDs 260 6.4 Small-Molecule OLEDs 266 6.5 Anode Materials 270
6.6 Cathode Materials 270 6.7 Hole Injection Layer 271 6.8 Electron
Injection Layer 272 6.9 Hole Transport Layer 272 6.10 Electron Transport
Layer 275 6.11 Light Emitting Material Processes 276 6.12 Host Materials
278 6.13 Fluorescent Dopants 279 6.14 Phosphorescent Dopants 283 6.15
Organic Solar Cells 283 6.16 Organic Solar Cell Materials 289 6.17 Summary
292 Suggestions for Further Reading 294 Problems 295 Appendix 1: Physical
Constants 301 Appendix 2: Properties of Semiconductor Materials 303
Appendix 3: The Boltzmann Distribution Function 305 Index 309
Introduction xi Acknowledgements xv 1 Semiconductor Physics 1 1.1
Introduction 2 1.2 The Band Theory of Solids 2 1.3 The Kronig-Penney Model
3 1.4 The Bragg Model 8 1.5 Effective Mass 8 1.6 Number of States in a Band
10 1.7 Band Filling 12 1.8 Fermi Energy and Holes 14 1.9 Carrier
Concentration 15 1.10 Semiconductor Materials 25 1.11 Semiconductor Band
Diagrams 26 1.12 Direct Gap and Indirect Gap Semiconductors 29 1.13
Extrinsic Semiconductors 35 1.14 Carrier Transport in Semiconductors 40
1.15 Equilibrium and Non-Equilibrium Dynamics 43 1.16 Carrier Diffusion and
the Einstein Relation 45 1.17 Quasi-Fermi Energies 48 1.18 The Diffusion
Equation 50 1.19 Traps and Carrier Lifetimes 53 1.20 Alloy Semiconductors
56 1.21 Summary 59 Suggestions for Further Reading 61 Problems 63 2 The PN
Junction Diode 69 2.1 Introduction 70 2.2 Diode Current 72 2.3 Contact
Potential 75 2.4 The Depletion Approximation 78 2.5 The Diode Equation 85
2.6 Reverse Breakdown and the Zener Diode 97 2.7 Tunnel Diodes 100 2.8
Generation/Recombination Currents 101 2.9 Ohmic Contacts, Schottky Barriers
and Schottky Diodes 104 2.10 Heterojunctions 113 2.11 Alternating Current
(AC) and Transient Behaviour 115 2.12 Summary 117 Suggestions for Further
Reading 118 Problems 119 3 Photon Emission and Absorption 123 3.1
Introduction to Luminescence and Absorption 124 3.2 Physics of Light
Emission 125 3.3 Simple Harmonic Radiator 128 3.4 Quantum Description 129
3.5 The Exciton 132 3.6 Two-Electron Atoms 135 3.7 Molecular Excitons 141
3.8 Band-to-Band Transitions 144 3.9 Photometric Units 148 3.10 Summary 152
Suggestions for Further Reading 153 Problems 155 4 The Solar Cell 159 4.1
Introduction 160 4.2 Light Absorption 162 4.3 Solar Radiation 164 4.4 Solar
Cell Design and Analysis 164 4.5 Thin Solar Cells 172 4.6 Solar Cell
Generation as a Function of Depth 176 4.7 Solar Cell Efficiency 179 4.8
Silicon Solar Cell Technology: Wafer Preparation 184 4.9 Silicon Solar Cell
Technology: Solar Cell Finishing 187 4.10 Silicon Solar Cell Technology:
Advanced Production Methods 191 4.11 Thin Film Solar Cells: Amorphous
Silicon 192 4.12 Telluride/Selenide/Sulphide Thin-Film Solar Cells 199 4.13
High-Efficiency Multijunction Solar Cells 200 4.14 Concentrating Solar
Systems 203 4.15 Summary 204 Suggestions for Further Reading 205 Problems
207 5 Light Emitting Diodes 215 5.1 Introduction 216 5.2 LED Operation and
Device Structures 217 5.3 Emission Spectrum 220 5.4 Non-Radiative
Recombination 221 5.5 Optical Outcoupling 223 5.6 GaAs LEDs 225 5.7
GaAs1-xPx LEDs 226 5.8 Double Heterojunction AlxGa1-xAs LEDs 228 5.9
AlGaInP LEDs 234 5.10 Ga1-xInxN LEDs 236 5.11 LED Structures for Enhanced
Outcoupling and Power Output 244 5.12 Summary 247 Suggestions for Further
Reading 248 Problems 249 6 Organic Semiconductors, OLEDs and Solar Cells
253 6.1 Introduction to Organic Electronics 254 6.2 Conjugated Systems 255
6.3 Polymer OLEDs 260 6.4 Small-Molecule OLEDs 266 6.5 Anode Materials 270
6.6 Cathode Materials 270 6.7 Hole Injection Layer 271 6.8 Electron
Injection Layer 272 6.9 Hole Transport Layer 272 6.10 Electron Transport
Layer 275 6.11 Light Emitting Material Processes 276 6.12 Host Materials
278 6.13 Fluorescent Dopants 279 6.14 Phosphorescent Dopants 283 6.15
Organic Solar Cells 283 6.16 Organic Solar Cell Materials 289 6.17 Summary
292 Suggestions for Further Reading 294 Problems 295 Appendix 1: Physical
Constants 301 Appendix 2: Properties of Semiconductor Materials 303
Appendix 3: The Boltzmann Distribution Function 305 Index 309
Introduction 2 1.2 The Band Theory of Solids 2 1.3 The Kronig-Penney Model
3 1.4 The Bragg Model 8 1.5 Effective Mass 8 1.6 Number of States in a Band
10 1.7 Band Filling 12 1.8 Fermi Energy and Holes 14 1.9 Carrier
Concentration 15 1.10 Semiconductor Materials 25 1.11 Semiconductor Band
Diagrams 26 1.12 Direct Gap and Indirect Gap Semiconductors 29 1.13
Extrinsic Semiconductors 35 1.14 Carrier Transport in Semiconductors 40
1.15 Equilibrium and Non-Equilibrium Dynamics 43 1.16 Carrier Diffusion and
the Einstein Relation 45 1.17 Quasi-Fermi Energies 48 1.18 The Diffusion
Equation 50 1.19 Traps and Carrier Lifetimes 53 1.20 Alloy Semiconductors
56 1.21 Summary 59 Suggestions for Further Reading 61 Problems 63 2 The PN
Junction Diode 69 2.1 Introduction 70 2.2 Diode Current 72 2.3 Contact
Potential 75 2.4 The Depletion Approximation 78 2.5 The Diode Equation 85
2.6 Reverse Breakdown and the Zener Diode 97 2.7 Tunnel Diodes 100 2.8
Generation/Recombination Currents 101 2.9 Ohmic Contacts, Schottky Barriers
and Schottky Diodes 104 2.10 Heterojunctions 113 2.11 Alternating Current
(AC) and Transient Behaviour 115 2.12 Summary 117 Suggestions for Further
Reading 118 Problems 119 3 Photon Emission and Absorption 123 3.1
Introduction to Luminescence and Absorption 124 3.2 Physics of Light
Emission 125 3.3 Simple Harmonic Radiator 128 3.4 Quantum Description 129
3.5 The Exciton 132 3.6 Two-Electron Atoms 135 3.7 Molecular Excitons 141
3.8 Band-to-Band Transitions 144 3.9 Photometric Units 148 3.10 Summary 152
Suggestions for Further Reading 153 Problems 155 4 The Solar Cell 159 4.1
Introduction 160 4.2 Light Absorption 162 4.3 Solar Radiation 164 4.4 Solar
Cell Design and Analysis 164 4.5 Thin Solar Cells 172 4.6 Solar Cell
Generation as a Function of Depth 176 4.7 Solar Cell Efficiency 179 4.8
Silicon Solar Cell Technology: Wafer Preparation 184 4.9 Silicon Solar Cell
Technology: Solar Cell Finishing 187 4.10 Silicon Solar Cell Technology:
Advanced Production Methods 191 4.11 Thin Film Solar Cells: Amorphous
Silicon 192 4.12 Telluride/Selenide/Sulphide Thin-Film Solar Cells 199 4.13
High-Efficiency Multijunction Solar Cells 200 4.14 Concentrating Solar
Systems 203 4.15 Summary 204 Suggestions for Further Reading 205 Problems
207 5 Light Emitting Diodes 215 5.1 Introduction 216 5.2 LED Operation and
Device Structures 217 5.3 Emission Spectrum 220 5.4 Non-Radiative
Recombination 221 5.5 Optical Outcoupling 223 5.6 GaAs LEDs 225 5.7
GaAs1-xPx LEDs 226 5.8 Double Heterojunction AlxGa1-xAs LEDs 228 5.9
AlGaInP LEDs 234 5.10 Ga1-xInxN LEDs 236 5.11 LED Structures for Enhanced
Outcoupling and Power Output 244 5.12 Summary 247 Suggestions for Further
Reading 248 Problems 249 6 Organic Semiconductors, OLEDs and Solar Cells
253 6.1 Introduction to Organic Electronics 254 6.2 Conjugated Systems 255
6.3 Polymer OLEDs 260 6.4 Small-Molecule OLEDs 266 6.5 Anode Materials 270
6.6 Cathode Materials 270 6.7 Hole Injection Layer 271 6.8 Electron
Injection Layer 272 6.9 Hole Transport Layer 272 6.10 Electron Transport
Layer 275 6.11 Light Emitting Material Processes 276 6.12 Host Materials
278 6.13 Fluorescent Dopants 279 6.14 Phosphorescent Dopants 283 6.15
Organic Solar Cells 283 6.16 Organic Solar Cell Materials 289 6.17 Summary
292 Suggestions for Further Reading 294 Problems 295 Appendix 1: Physical
Constants 301 Appendix 2: Properties of Semiconductor Materials 303
Appendix 3: The Boltzmann Distribution Function 305 Index 309