Printable Solar Cells
Herausgeber: Sankir, Nurdan Demirci; Sankir, Mehmet
Printable Solar Cells
Herausgeber: Sankir, Nurdan Demirci; Sankir, Mehmet
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating.…mehr
Andere Kunden interessierten sich auch für
- Pawel Jerzy WojcikPrintable materials for flexible electrochemical devices48,99 €
- Vasilis M FthenakisElectricity from Sunlight97,99 €
- Advanced Solutions in Power Systems185,99 €
- Conversion of Water and CO2 to Fuels Using Solar Energy224,99 €
- Photovoltaic Modeling Handbook226,99 €
- Virginie VialletInorganic Massive Batteries189,99 €
- Applications of Modern Heuristic Optimization Methods in Power and Energy Systems178,99 €
-
-
-
The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 576
- Erscheinungstermin: 1. Mai 2017
- Englisch
- Abmessung: 235mm x 157mm x 35mm
- Gewicht: 976g
- ISBN-13: 9781119283713
- ISBN-10: 111928371X
- Artikelnr.: 48250047
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 576
- Erscheinungstermin: 1. Mai 2017
- Englisch
- Abmessung: 235mm x 157mm x 35mm
- Gewicht: 976g
- ISBN-13: 9781119283713
- ISBN-10: 111928371X
- Artikelnr.: 48250047
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Nurdan Demirci Sankir is currently an Associate Professor in the Materials Science and Nanotechnology Engineering Department at the TOBB University of Economics and Technology, Ankara, Turkey. She received her M.Eng and PhD degrees in Materials Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. She then joined NanoSonic Inc. in Virginia, USA as R&D engineer and program manager, and in 2007 she enrolled at TOBB ETU where she established the Energy Research and Solar Cell Laboratories. Nurdan has actively carried out research activities in many areas including solar driven water splitting, photocatalytic degradation and nanostructured semiconductors. Mehmet Sankir received his PhD in Macromolecular Science and Engineering from the Virginia Polytechnic and State University, USA in 2005. He is currently an Associate Professor in the Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Turkey and group leader of Advanced Membrane Technologies Laboratory. Mehmet has actively carried out research and consulting activities in the areas of membranes for fuel cells, flow batteries, hydrogen generation and desalination.
Preface xv
Part I Hybrid Materials and Process Technologies for Printable Solar Cells
1 Organic and Inorganic Hybrid Solar Cells 3
Serap Güne¿ and Niyazi Serdar Sariciftci
1.1 Introduction 4
1.2 Organic/Inorganic Hybrid Solar Cells 5
1.2.1 Introduction to Hybrid Solar Cells 5
1.2.2 Hybrid Solar Cells 5
1.2.2.1 Operational Principles of Bulk
Heterojunction Hybrid Solar Cells 5
1.2.2.2 Bulk Heterojunction Hybrid Solar Cells 8
1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells 12
1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells 15
1.2.2.5 Dye-Sensitized Solar Cells 16
1.2.2.6 Perovskite Solar Cells 21
1.3 Conclusion 23
References 25
2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for
Energy Applications 37
J. Ciro, J.F. Montoya, R. Betancur and F. Jaramillo
2.1 Physical Chemical Principles of Film Formation by Solution
Processes: From Suspensions of Nanoparticles and Solutions to Nucleation,
Growth, Coarsening and Microstructural Evolution of Films 38
2.2 Solution-Processing Techniques for Thin Film Deposition 40
2.2.1 Spin Coating 42
2.2.2 Doctor Blade 43
2.2.3 Slot-Die Coating 44
2.2.4 Spray Coating 46
2.3 Properties and Characterization of Thin Films: Transport, Active and
Electrode Layers in Thin Film Solar Cells 46
2.4 Understanding the Crystallization Processes in Hybrid Semiconductor
Films: Hybrid Perovskite as a Model 50
2.4.1 Thermal Transitions Revealed by DSC 50
2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar
Cell 53
2.4.3 Effect of the Annealing Process on Morphology and Crystalline
Properties of Perovskite Films 55
2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite
Films: Understanding the Role of Additives and Moisture in the Final
Properties of Perovskite Layers 56
References 57
3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots 65
Wenjin Yue
3.1 Introduction 65
3.2 Polymer/QD Solar Cells 67
3.2.1 Working Principle 67
3.2.2 Device Parameters 68
3.2.2.1 Open-Circuit Voltage (Voc) 68
3.2.2.2 Short-Circuit Current (Jsc) 68
3.2.2.3 Fill Factor (FF) 69
3.2.3 Device Structure 70
3.2.4 Progress of Polymer/QD Solar Cells 71
3.2.4.1 Device Based on Cd Compound 71
3.2.4.2 Device Based on Pb Compound 74
3.2.4.3 Device Based on CuInS2 76
3.2.5 Strategy for Improved Device Performance 78
3.2.5.1 QDs Surface Treatment 78
3.2.5.2 In-Situ Synthesis of QDs 81
3.2.5.3 Polymer End-Group Functionalization 82
3.3 Outlooks and Conclusions 83
Acknowledgment 83
4 Hole Transporting Layers in Printable Solar Cells 93
David Curiel and Miriam Más-Montoya
4.1 Introduction 94
4.2 Hole Transporting Layers in Organic Solar Cells 97
4.2.1 Utility of Hole Transporting Layers 97
4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the
Open-Circuit Voltage 98
4.1.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking
Layer 102
4.1.1.3 Optical Spacer 103
4.1.1.4 Modulation of the Active Layer Morphology and Use as Protective
Layer 103
4.1.2 Overview of Materials Used as Hole Transporting Layers 104
4.1.2.1 Polymers 104
4.1.2.2 Small Molecules 109
4.1.2.3 Metals 112
4.1.2.4 Metal Oxides 112
4.1.2.5 Metal Salts 116
4.1.2.6 Carbon Nanotubes 116
4.1.2.7 Graphene-Based Materials 116
4.1.2.8 Self-Assembled Monolayers 119
4.2 Hole Transporting Layers in Dye-Sensitized Solar Cells 121
4.2.1 Overview of Materials Used as Hole Transporting Layers 123
4.2.1.1 Small Molecules 123
4.2.1.2 Polymers 126
4.3 Hole Transporting Layers in Perovskite Solar Cells 127
4.3.1 Overview of Materials Used as Hole Transporting Layers 128
4.3.1.1 Small Molecules 128
4.3.1.2 Polymers 137
4.3.1.3 Metal Oxides 139
4.3.1.4 Metal Salts 140
4.3.1.5 Carbon Nanotubes 141
4.3.1.6 Graphene-Based Materials 142
4.4 Concluding Remarks 143
5 Printable Solar Cells 163
Alexander Kovalenko and Michal Hrabal
5.1 Introduction 164
5.2 Printable Solar Cells Working Principles 165
5.2.1 CIGS Solar Cells 165
5.2.2 Perovskite Solar Cells 167
5.2.3 Organic Solar Cells 170
5.2.4 Printable Charge-Carrier Selective Layers 172
5.3 Solution-Based Deposition of Thin Film Layers 173
5.3.1 Coating Techniques 174
5.3.1.1 Casting 174
5.3.1.2 Spin Coating 174
5.3.1.3 Blade Coating 176
5.3.1.4 Slot-Die Coating 177
5.3.2 Printing Techniques 179
5.3.2.1 Screen Printing 180
5.3.2.2 Gravure Printing 182
5.3.2.3 Flexographic Printing 184
5.3.2.4 Inkjet Printing 185
5.4 Characterization Techniques 189
5.4.1 Characterization of Thin Layers 189
5.4.2 Electrical Characterization of Solar Cells 190
5.5 Conclusion 194
References 197
Part II Organic Materials and Process Technologies for Printable Solar
Cells
6 Spray-Coated Organic Solar Cells 205
Yifan Zheng and Junsheng Yu
6.1 Introduction 205
6.2 Introduction of Spray-Coating Method 206
6.2.1 History of Spray Coating 206
6.2.2 Spray-Coating Equipment 206
6.2.2.1 Airbrush Spray Deposition 206
6.2.2.2 Ultrasonic Spray Deposition 209
6.2.2.3 Electrospray Deposition 210
6.2.3 Spray-Coating Treatment 212
6.2.3.1 Thermal Annealing 213
6.2.3.2 Solvent Treatments 214
6.3 Materials for Spray Coating 216
6.3.1 Organic Materials 216
6.3.2 Metal Oxide and Nanoparticles 220
6.3.3 Perovskite 222
6.4 Application of Spray Coating 224
6.5 Conclusions 226
Acknowledgment 226
References 226
7 Interface Engineering: A Key Aspect for the Potential Commercialization
of Printable Organic Photovoltaic Cells 235
Varun Vohra, Nur Tahirah Razali and Hideyuki Murata
7.1 Introduction 236
7.2 SD-PSCs Based on P3HT:PCBM Active Layers 240
7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of
SD-PSCs 240
7.2.2 Generation of Vertical Concentration Gradient by Addition of
Regiorandom P3HT in SD-PSCs 242
7.2.3 Generation of Vertical Concentration Gradient and Molecular
Orientation by Rubbing P3HT in SD-PSCs 246
7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation
Resulting from Active Layer/Substrate
Interactions 248
7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC
Fabrication 252
7.5 Conclusions 257
References 258
8 Structural, Optical, Electrical and Electronic Properties of PEDOT: PSS
Thin Films and Their Application in Solar Cells 263
Sheng Hsiung Chang, Cheng-Chiang Chen, Hsin-Ming Cheng and Sheng-Hui Chen
8.1 Introduction 264
8.2 Chemical Structure of PEDOT:PSS 265
8.3 Optical and Electrical Characteristics of PEDOT:PSS 267
8.4 Electronic Characteristics of PEDOT:PSS 270
8.5 Highly Conductive PEDOT:PSS Thin Films 271
8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films 273
8.6.1 Effect of PEDOT/PSS Ratio 274
8.6.2 Effect of Spin Rate 275
8.6.3 Effect of Thermal Annealing Temperature 277
8.6.4 Effects of Viscosity of PEDOT:PSS Solutions 278
8.7 Directions for Future Development 281
8.8 Conclusion 282
Reference 283
Part III Perovskites and Process Technologies for Printable Solar Cells
9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and
Applications for Solar Cells 291
Timur Sh. Atabaev and Nguyen Hoa Hong
9.1 Introduction 291
9.2 Optical Properties of Organic-Inorganic Perovskite Materials 293
9.3 Charge Transport Properties 294
9.4 Electron Transporting Materials (ETM) 295
9.5 Hole-Transporting Materials (HTM) 295
9.6 Perovskite Solar Cells Architectures 296
9.7 Perovskite Deposition Methods 298
9.8 Photoexcited States 300
9.9 Hysteresis 300
9.10 Stability in Humid Environment 302
9.11 Stability Under UV Light Exposure 302
9.12 Stability at High Temperatures 303
9.13 Additives 304
9.14 Conclusions and Outlook 305
Acknowledgment 306
References 306
10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and
Roll-to-Roll Compatible Printing/Coating Processes 313
Dechan Angmo, Mei Gao and Doojin Vak
10.1 Introduction 314
10.2 Optoelectronic Properties 316
10.3 History 317
10.4 Device Configurations 318
10.5 Functional Materials 321
10.5.1 The Organic-Inorganic Halide Perovskites 322
10.5.2 Electron-Selective Layer 324
10.5.3 Hole-Selective Layer 325
10.5.4 Transparent Electrode 325
10.5.5 Counter Electrode 326
10.6 Spin Coating 327
10.7 Roll-to-Roll Processing 331
10.8 Substrate Limitation 331
10.9 Printing and Coating Methods 333
10.9.1 Coating Methods 335
10.9.1.1 Slot-Die Coating 335
10.9.1.2 Spray Coating 339
10.9.1.3 Doctor Blade Coating 342
10.9.1.4 Knife Coating 344
10.9.1.5 Reverse Gravure Coating 345
10.9.2 Printing Methods 346
10.9.2.1 Gravure Printing 346
10.9.2.2 Flexographic Printing 347
10.9.2.3 Screen Printing 349
10.9.2.4 Inkjet Printing 350
10.10 Future Outlook 352
References 352
11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells
and Modules Based on Advanced Nanocomposite Materials 363
Theodoros Makris, Argyroula Mourtzikou, Andreas Rapsomanikis and Elias
Stathatos
11.1 Introduction 364
11.1.1 Dye-Sensitized Solar Cells 364
11.1.2 Perovskite Solar Cells 367
11.2 Inkjet Printing Process 369
11.2.1 Inkjet Printing in DSSC Technology 370
11.2.1.1 Inkjet Printing of Transition Metal Oxides 372
11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides 373
11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes 374
11.2.2 Inkjet Printing in Perovskite Solar Cell Technology 377
11.2.2.1 Inkjet Printing of Perovskite Material 378
11.3 Conclusions 379
References 379
Part IV Inorganic Materials and Process Technologies for Printable Solar
Cells 383
12 Solution-Processed Kesterite Solar Cells 385
Fangyang Liu
12.1 Introduction 385
12.2 Fundamental Aspects of Kesterite Solar Cells 386
12.2.1 Crystal Structure 386
12.2.2 Phase Space and Secondary Phases 388
12.2.3 Optical and Electrical Properties 390
12.2.4 Device Architecture 391
12.3 Keterite Absorber Deposition Strategies 393
12.4 Electrodeposition 395
12.4.1 Stacked Elemental Layer (SEL) Electrodeposition 396
12.4.2 Metallic Alloy Co-electrodeposition 398
12.4.3 Chalcogenide Co-electrodeposition 399
12.5 Direct Solution Coating 400
12.5.1 Hydrazine Solution Coating 401
12.5.2 Particulate-Based Solution Coating 402
12.5.3 Molecular-Based Solution Coating 405
12.6 Conclusion 409
References 409
13 Inorganic Hole Contacts for Perovskite Solar Cells: Towards
High-Performance Printable Solar Cells 423
Xingtian Yin and Wenxiu Que
13.1 Introduction 424
13.2 Transition Metal Oxides 426
13.2.1 Molybdenum Oxide (MoOx, x < 3) 426
13.2.2 Nickel Oxide (NiO) 428
13.2.2.1 Mesoscopic NiO Perovskite Solar Cells 428
13.2.2.2 Planar NiO Perovskite Solar Cells 429
13.2.3 Binary Copper Oxide (CuO and Cu2O) 439
13.2.4 Other Transition Metal Oxides 440
13.3 Non-Oxide Copper Compounds 440
13.3.1 Cuprous Iodide (CuI) 441
13.3.2 Cuprous Rhodanide (CuSCN) 441
13.3.3 Copper Sulfide (CuS) 442
13.3.4 CuAlO2 443
13.3.5 CuInS2 and Cu2ZnSnS4 444
13.4 Other Inorganic HTMs 444
13.4.1 PdS Quantum Dots (QDs) 444
13.4.2 Two-Dimensional (2D) Materials 445
13.5 Towards Printable Solar Cells 446
13.6 Conclusions and Perspectives 449
Acknowledgment 450
References 450
14 Electrode Materials for Printable Solar Cells 457
Lijun Hu, Ke Yang, Wei Chen, Falin Wu, Jiehao Fu, Wenbo Sun, Hongyan Huang,
Baomin Zhao, Kuan Sun and Jianyong Ouyang
14.1 Introduction 458
14.2 Transparent Conjugated Polymers 459
14.2.1 Solvent Additive Method 460
14.2.2 Post-Treatment of PEDOT:PSS Films 461
14.2.3 Printing PEDOT:PSS Inks 463
14.3 Carbon-Based Nanomaterials 463
14.3.1 Graphene 466
14.3.2 Carbon Nanotubes 472
14.4 Metallic Nanostructures 476
14.4.1 Metal Nanomeshes 476
14.4.2 Metal Nanowire Networks 480
14.4.3 Ultrathin Metal Films 482
14.5 Multilayer Thin Films 486
14.6 Printable Metal Back Electrodes 491
14.7 Carbon-Based Back Electrodes 494
14.8 Summary and Outlook 497
Acknowledgment 498
References 498
15 Photonic Crystals for Photon Management in Solar Cells 513
Shuai Zhang, Zhongze Gu and Jian-Ning Ding
15.1 Introduction 513
15.2 Fundamentals of PCs 515
15.3 Fabrication Strategies of PCs for Photovoltaics 518
15.3.1 1D Multilayer PCs 519
15.3.2 2D PCs 524
15.3.3 3D PCs 527
15.4 Different Functionalities of PCs in Solar Cells 530
15.4.1 PC Reflectors 531
15.4.2 PC Absorbers 535
15.4.3 Front-Side PCs 538
15.4.4 PCs for Other Functionalities 540
15.5 Summary and Outlook 540
Acknowledgment 542
References 542
Part I Hybrid Materials and Process Technologies for Printable Solar Cells
1 Organic and Inorganic Hybrid Solar Cells 3
Serap Güne¿ and Niyazi Serdar Sariciftci
1.1 Introduction 4
1.2 Organic/Inorganic Hybrid Solar Cells 5
1.2.1 Introduction to Hybrid Solar Cells 5
1.2.2 Hybrid Solar Cells 5
1.2.2.1 Operational Principles of Bulk
Heterojunction Hybrid Solar Cells 5
1.2.2.2 Bulk Heterojunction Hybrid Solar Cells 8
1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells 12
1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells 15
1.2.2.5 Dye-Sensitized Solar Cells 16
1.2.2.6 Perovskite Solar Cells 21
1.3 Conclusion 23
References 25
2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for
Energy Applications 37
J. Ciro, J.F. Montoya, R. Betancur and F. Jaramillo
2.1 Physical Chemical Principles of Film Formation by Solution
Processes: From Suspensions of Nanoparticles and Solutions to Nucleation,
Growth, Coarsening and Microstructural Evolution of Films 38
2.2 Solution-Processing Techniques for Thin Film Deposition 40
2.2.1 Spin Coating 42
2.2.2 Doctor Blade 43
2.2.3 Slot-Die Coating 44
2.2.4 Spray Coating 46
2.3 Properties and Characterization of Thin Films: Transport, Active and
Electrode Layers in Thin Film Solar Cells 46
2.4 Understanding the Crystallization Processes in Hybrid Semiconductor
Films: Hybrid Perovskite as a Model 50
2.4.1 Thermal Transitions Revealed by DSC 50
2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar
Cell 53
2.4.3 Effect of the Annealing Process on Morphology and Crystalline
Properties of Perovskite Films 55
2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite
Films: Understanding the Role of Additives and Moisture in the Final
Properties of Perovskite Layers 56
References 57
3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots 65
Wenjin Yue
3.1 Introduction 65
3.2 Polymer/QD Solar Cells 67
3.2.1 Working Principle 67
3.2.2 Device Parameters 68
3.2.2.1 Open-Circuit Voltage (Voc) 68
3.2.2.2 Short-Circuit Current (Jsc) 68
3.2.2.3 Fill Factor (FF) 69
3.2.3 Device Structure 70
3.2.4 Progress of Polymer/QD Solar Cells 71
3.2.4.1 Device Based on Cd Compound 71
3.2.4.2 Device Based on Pb Compound 74
3.2.4.3 Device Based on CuInS2 76
3.2.5 Strategy for Improved Device Performance 78
3.2.5.1 QDs Surface Treatment 78
3.2.5.2 In-Situ Synthesis of QDs 81
3.2.5.3 Polymer End-Group Functionalization 82
3.3 Outlooks and Conclusions 83
Acknowledgment 83
4 Hole Transporting Layers in Printable Solar Cells 93
David Curiel and Miriam Más-Montoya
4.1 Introduction 94
4.2 Hole Transporting Layers in Organic Solar Cells 97
4.2.1 Utility of Hole Transporting Layers 97
4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the
Open-Circuit Voltage 98
4.1.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking
Layer 102
4.1.1.3 Optical Spacer 103
4.1.1.4 Modulation of the Active Layer Morphology and Use as Protective
Layer 103
4.1.2 Overview of Materials Used as Hole Transporting Layers 104
4.1.2.1 Polymers 104
4.1.2.2 Small Molecules 109
4.1.2.3 Metals 112
4.1.2.4 Metal Oxides 112
4.1.2.5 Metal Salts 116
4.1.2.6 Carbon Nanotubes 116
4.1.2.7 Graphene-Based Materials 116
4.1.2.8 Self-Assembled Monolayers 119
4.2 Hole Transporting Layers in Dye-Sensitized Solar Cells 121
4.2.1 Overview of Materials Used as Hole Transporting Layers 123
4.2.1.1 Small Molecules 123
4.2.1.2 Polymers 126
4.3 Hole Transporting Layers in Perovskite Solar Cells 127
4.3.1 Overview of Materials Used as Hole Transporting Layers 128
4.3.1.1 Small Molecules 128
4.3.1.2 Polymers 137
4.3.1.3 Metal Oxides 139
4.3.1.4 Metal Salts 140
4.3.1.5 Carbon Nanotubes 141
4.3.1.6 Graphene-Based Materials 142
4.4 Concluding Remarks 143
5 Printable Solar Cells 163
Alexander Kovalenko and Michal Hrabal
5.1 Introduction 164
5.2 Printable Solar Cells Working Principles 165
5.2.1 CIGS Solar Cells 165
5.2.2 Perovskite Solar Cells 167
5.2.3 Organic Solar Cells 170
5.2.4 Printable Charge-Carrier Selective Layers 172
5.3 Solution-Based Deposition of Thin Film Layers 173
5.3.1 Coating Techniques 174
5.3.1.1 Casting 174
5.3.1.2 Spin Coating 174
5.3.1.3 Blade Coating 176
5.3.1.4 Slot-Die Coating 177
5.3.2 Printing Techniques 179
5.3.2.1 Screen Printing 180
5.3.2.2 Gravure Printing 182
5.3.2.3 Flexographic Printing 184
5.3.2.4 Inkjet Printing 185
5.4 Characterization Techniques 189
5.4.1 Characterization of Thin Layers 189
5.4.2 Electrical Characterization of Solar Cells 190
5.5 Conclusion 194
References 197
Part II Organic Materials and Process Technologies for Printable Solar
Cells
6 Spray-Coated Organic Solar Cells 205
Yifan Zheng and Junsheng Yu
6.1 Introduction 205
6.2 Introduction of Spray-Coating Method 206
6.2.1 History of Spray Coating 206
6.2.2 Spray-Coating Equipment 206
6.2.2.1 Airbrush Spray Deposition 206
6.2.2.2 Ultrasonic Spray Deposition 209
6.2.2.3 Electrospray Deposition 210
6.2.3 Spray-Coating Treatment 212
6.2.3.1 Thermal Annealing 213
6.2.3.2 Solvent Treatments 214
6.3 Materials for Spray Coating 216
6.3.1 Organic Materials 216
6.3.2 Metal Oxide and Nanoparticles 220
6.3.3 Perovskite 222
6.4 Application of Spray Coating 224
6.5 Conclusions 226
Acknowledgment 226
References 226
7 Interface Engineering: A Key Aspect for the Potential Commercialization
of Printable Organic Photovoltaic Cells 235
Varun Vohra, Nur Tahirah Razali and Hideyuki Murata
7.1 Introduction 236
7.2 SD-PSCs Based on P3HT:PCBM Active Layers 240
7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of
SD-PSCs 240
7.2.2 Generation of Vertical Concentration Gradient by Addition of
Regiorandom P3HT in SD-PSCs 242
7.2.3 Generation of Vertical Concentration Gradient and Molecular
Orientation by Rubbing P3HT in SD-PSCs 246
7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation
Resulting from Active Layer/Substrate
Interactions 248
7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC
Fabrication 252
7.5 Conclusions 257
References 258
8 Structural, Optical, Electrical and Electronic Properties of PEDOT: PSS
Thin Films and Their Application in Solar Cells 263
Sheng Hsiung Chang, Cheng-Chiang Chen, Hsin-Ming Cheng and Sheng-Hui Chen
8.1 Introduction 264
8.2 Chemical Structure of PEDOT:PSS 265
8.3 Optical and Electrical Characteristics of PEDOT:PSS 267
8.4 Electronic Characteristics of PEDOT:PSS 270
8.5 Highly Conductive PEDOT:PSS Thin Films 271
8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films 273
8.6.1 Effect of PEDOT/PSS Ratio 274
8.6.2 Effect of Spin Rate 275
8.6.3 Effect of Thermal Annealing Temperature 277
8.6.4 Effects of Viscosity of PEDOT:PSS Solutions 278
8.7 Directions for Future Development 281
8.8 Conclusion 282
Reference 283
Part III Perovskites and Process Technologies for Printable Solar Cells
9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and
Applications for Solar Cells 291
Timur Sh. Atabaev and Nguyen Hoa Hong
9.1 Introduction 291
9.2 Optical Properties of Organic-Inorganic Perovskite Materials 293
9.3 Charge Transport Properties 294
9.4 Electron Transporting Materials (ETM) 295
9.5 Hole-Transporting Materials (HTM) 295
9.6 Perovskite Solar Cells Architectures 296
9.7 Perovskite Deposition Methods 298
9.8 Photoexcited States 300
9.9 Hysteresis 300
9.10 Stability in Humid Environment 302
9.11 Stability Under UV Light Exposure 302
9.12 Stability at High Temperatures 303
9.13 Additives 304
9.14 Conclusions and Outlook 305
Acknowledgment 306
References 306
10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and
Roll-to-Roll Compatible Printing/Coating Processes 313
Dechan Angmo, Mei Gao and Doojin Vak
10.1 Introduction 314
10.2 Optoelectronic Properties 316
10.3 History 317
10.4 Device Configurations 318
10.5 Functional Materials 321
10.5.1 The Organic-Inorganic Halide Perovskites 322
10.5.2 Electron-Selective Layer 324
10.5.3 Hole-Selective Layer 325
10.5.4 Transparent Electrode 325
10.5.5 Counter Electrode 326
10.6 Spin Coating 327
10.7 Roll-to-Roll Processing 331
10.8 Substrate Limitation 331
10.9 Printing and Coating Methods 333
10.9.1 Coating Methods 335
10.9.1.1 Slot-Die Coating 335
10.9.1.2 Spray Coating 339
10.9.1.3 Doctor Blade Coating 342
10.9.1.4 Knife Coating 344
10.9.1.5 Reverse Gravure Coating 345
10.9.2 Printing Methods 346
10.9.2.1 Gravure Printing 346
10.9.2.2 Flexographic Printing 347
10.9.2.3 Screen Printing 349
10.9.2.4 Inkjet Printing 350
10.10 Future Outlook 352
References 352
11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells
and Modules Based on Advanced Nanocomposite Materials 363
Theodoros Makris, Argyroula Mourtzikou, Andreas Rapsomanikis and Elias
Stathatos
11.1 Introduction 364
11.1.1 Dye-Sensitized Solar Cells 364
11.1.2 Perovskite Solar Cells 367
11.2 Inkjet Printing Process 369
11.2.1 Inkjet Printing in DSSC Technology 370
11.2.1.1 Inkjet Printing of Transition Metal Oxides 372
11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides 373
11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes 374
11.2.2 Inkjet Printing in Perovskite Solar Cell Technology 377
11.2.2.1 Inkjet Printing of Perovskite Material 378
11.3 Conclusions 379
References 379
Part IV Inorganic Materials and Process Technologies for Printable Solar
Cells 383
12 Solution-Processed Kesterite Solar Cells 385
Fangyang Liu
12.1 Introduction 385
12.2 Fundamental Aspects of Kesterite Solar Cells 386
12.2.1 Crystal Structure 386
12.2.2 Phase Space and Secondary Phases 388
12.2.3 Optical and Electrical Properties 390
12.2.4 Device Architecture 391
12.3 Keterite Absorber Deposition Strategies 393
12.4 Electrodeposition 395
12.4.1 Stacked Elemental Layer (SEL) Electrodeposition 396
12.4.2 Metallic Alloy Co-electrodeposition 398
12.4.3 Chalcogenide Co-electrodeposition 399
12.5 Direct Solution Coating 400
12.5.1 Hydrazine Solution Coating 401
12.5.2 Particulate-Based Solution Coating 402
12.5.3 Molecular-Based Solution Coating 405
12.6 Conclusion 409
References 409
13 Inorganic Hole Contacts for Perovskite Solar Cells: Towards
High-Performance Printable Solar Cells 423
Xingtian Yin and Wenxiu Que
13.1 Introduction 424
13.2 Transition Metal Oxides 426
13.2.1 Molybdenum Oxide (MoOx, x < 3) 426
13.2.2 Nickel Oxide (NiO) 428
13.2.2.1 Mesoscopic NiO Perovskite Solar Cells 428
13.2.2.2 Planar NiO Perovskite Solar Cells 429
13.2.3 Binary Copper Oxide (CuO and Cu2O) 439
13.2.4 Other Transition Metal Oxides 440
13.3 Non-Oxide Copper Compounds 440
13.3.1 Cuprous Iodide (CuI) 441
13.3.2 Cuprous Rhodanide (CuSCN) 441
13.3.3 Copper Sulfide (CuS) 442
13.3.4 CuAlO2 443
13.3.5 CuInS2 and Cu2ZnSnS4 444
13.4 Other Inorganic HTMs 444
13.4.1 PdS Quantum Dots (QDs) 444
13.4.2 Two-Dimensional (2D) Materials 445
13.5 Towards Printable Solar Cells 446
13.6 Conclusions and Perspectives 449
Acknowledgment 450
References 450
14 Electrode Materials for Printable Solar Cells 457
Lijun Hu, Ke Yang, Wei Chen, Falin Wu, Jiehao Fu, Wenbo Sun, Hongyan Huang,
Baomin Zhao, Kuan Sun and Jianyong Ouyang
14.1 Introduction 458
14.2 Transparent Conjugated Polymers 459
14.2.1 Solvent Additive Method 460
14.2.2 Post-Treatment of PEDOT:PSS Films 461
14.2.3 Printing PEDOT:PSS Inks 463
14.3 Carbon-Based Nanomaterials 463
14.3.1 Graphene 466
14.3.2 Carbon Nanotubes 472
14.4 Metallic Nanostructures 476
14.4.1 Metal Nanomeshes 476
14.4.2 Metal Nanowire Networks 480
14.4.3 Ultrathin Metal Films 482
14.5 Multilayer Thin Films 486
14.6 Printable Metal Back Electrodes 491
14.7 Carbon-Based Back Electrodes 494
14.8 Summary and Outlook 497
Acknowledgment 498
References 498
15 Photonic Crystals for Photon Management in Solar Cells 513
Shuai Zhang, Zhongze Gu and Jian-Ning Ding
15.1 Introduction 513
15.2 Fundamentals of PCs 515
15.3 Fabrication Strategies of PCs for Photovoltaics 518
15.3.1 1D Multilayer PCs 519
15.3.2 2D PCs 524
15.3.3 3D PCs 527
15.4 Different Functionalities of PCs in Solar Cells 530
15.4.1 PC Reflectors 531
15.4.2 PC Absorbers 535
15.4.3 Front-Side PCs 538
15.4.4 PCs for Other Functionalities 540
15.5 Summary and Outlook 540
Acknowledgment 542
References 542
Preface xv
Part I Hybrid Materials and Process Technologies for Printable Solar Cells
1 Organic and Inorganic Hybrid Solar Cells 3
Serap Güne¿ and Niyazi Serdar Sariciftci
1.1 Introduction 4
1.2 Organic/Inorganic Hybrid Solar Cells 5
1.2.1 Introduction to Hybrid Solar Cells 5
1.2.2 Hybrid Solar Cells 5
1.2.2.1 Operational Principles of Bulk
Heterojunction Hybrid Solar Cells 5
1.2.2.2 Bulk Heterojunction Hybrid Solar Cells 8
1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells 12
1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells 15
1.2.2.5 Dye-Sensitized Solar Cells 16
1.2.2.6 Perovskite Solar Cells 21
1.3 Conclusion 23
References 25
2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for
Energy Applications 37
J. Ciro, J.F. Montoya, R. Betancur and F. Jaramillo
2.1 Physical Chemical Principles of Film Formation by Solution
Processes: From Suspensions of Nanoparticles and Solutions to Nucleation,
Growth, Coarsening and Microstructural Evolution of Films 38
2.2 Solution-Processing Techniques for Thin Film Deposition 40
2.2.1 Spin Coating 42
2.2.2 Doctor Blade 43
2.2.3 Slot-Die Coating 44
2.2.4 Spray Coating 46
2.3 Properties and Characterization of Thin Films: Transport, Active and
Electrode Layers in Thin Film Solar Cells 46
2.4 Understanding the Crystallization Processes in Hybrid Semiconductor
Films: Hybrid Perovskite as a Model 50
2.4.1 Thermal Transitions Revealed by DSC 50
2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar
Cell 53
2.4.3 Effect of the Annealing Process on Morphology and Crystalline
Properties of Perovskite Films 55
2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite
Films: Understanding the Role of Additives and Moisture in the Final
Properties of Perovskite Layers 56
References 57
3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots 65
Wenjin Yue
3.1 Introduction 65
3.2 Polymer/QD Solar Cells 67
3.2.1 Working Principle 67
3.2.2 Device Parameters 68
3.2.2.1 Open-Circuit Voltage (Voc) 68
3.2.2.2 Short-Circuit Current (Jsc) 68
3.2.2.3 Fill Factor (FF) 69
3.2.3 Device Structure 70
3.2.4 Progress of Polymer/QD Solar Cells 71
3.2.4.1 Device Based on Cd Compound 71
3.2.4.2 Device Based on Pb Compound 74
3.2.4.3 Device Based on CuInS2 76
3.2.5 Strategy for Improved Device Performance 78
3.2.5.1 QDs Surface Treatment 78
3.2.5.2 In-Situ Synthesis of QDs 81
3.2.5.3 Polymer End-Group Functionalization 82
3.3 Outlooks and Conclusions 83
Acknowledgment 83
4 Hole Transporting Layers in Printable Solar Cells 93
David Curiel and Miriam Más-Montoya
4.1 Introduction 94
4.2 Hole Transporting Layers in Organic Solar Cells 97
4.2.1 Utility of Hole Transporting Layers 97
4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the
Open-Circuit Voltage 98
4.1.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking
Layer 102
4.1.1.3 Optical Spacer 103
4.1.1.4 Modulation of the Active Layer Morphology and Use as Protective
Layer 103
4.1.2 Overview of Materials Used as Hole Transporting Layers 104
4.1.2.1 Polymers 104
4.1.2.2 Small Molecules 109
4.1.2.3 Metals 112
4.1.2.4 Metal Oxides 112
4.1.2.5 Metal Salts 116
4.1.2.6 Carbon Nanotubes 116
4.1.2.7 Graphene-Based Materials 116
4.1.2.8 Self-Assembled Monolayers 119
4.2 Hole Transporting Layers in Dye-Sensitized Solar Cells 121
4.2.1 Overview of Materials Used as Hole Transporting Layers 123
4.2.1.1 Small Molecules 123
4.2.1.2 Polymers 126
4.3 Hole Transporting Layers in Perovskite Solar Cells 127
4.3.1 Overview of Materials Used as Hole Transporting Layers 128
4.3.1.1 Small Molecules 128
4.3.1.2 Polymers 137
4.3.1.3 Metal Oxides 139
4.3.1.4 Metal Salts 140
4.3.1.5 Carbon Nanotubes 141
4.3.1.6 Graphene-Based Materials 142
4.4 Concluding Remarks 143
5 Printable Solar Cells 163
Alexander Kovalenko and Michal Hrabal
5.1 Introduction 164
5.2 Printable Solar Cells Working Principles 165
5.2.1 CIGS Solar Cells 165
5.2.2 Perovskite Solar Cells 167
5.2.3 Organic Solar Cells 170
5.2.4 Printable Charge-Carrier Selective Layers 172
5.3 Solution-Based Deposition of Thin Film Layers 173
5.3.1 Coating Techniques 174
5.3.1.1 Casting 174
5.3.1.2 Spin Coating 174
5.3.1.3 Blade Coating 176
5.3.1.4 Slot-Die Coating 177
5.3.2 Printing Techniques 179
5.3.2.1 Screen Printing 180
5.3.2.2 Gravure Printing 182
5.3.2.3 Flexographic Printing 184
5.3.2.4 Inkjet Printing 185
5.4 Characterization Techniques 189
5.4.1 Characterization of Thin Layers 189
5.4.2 Electrical Characterization of Solar Cells 190
5.5 Conclusion 194
References 197
Part II Organic Materials and Process Technologies for Printable Solar
Cells
6 Spray-Coated Organic Solar Cells 205
Yifan Zheng and Junsheng Yu
6.1 Introduction 205
6.2 Introduction of Spray-Coating Method 206
6.2.1 History of Spray Coating 206
6.2.2 Spray-Coating Equipment 206
6.2.2.1 Airbrush Spray Deposition 206
6.2.2.2 Ultrasonic Spray Deposition 209
6.2.2.3 Electrospray Deposition 210
6.2.3 Spray-Coating Treatment 212
6.2.3.1 Thermal Annealing 213
6.2.3.2 Solvent Treatments 214
6.3 Materials for Spray Coating 216
6.3.1 Organic Materials 216
6.3.2 Metal Oxide and Nanoparticles 220
6.3.3 Perovskite 222
6.4 Application of Spray Coating 224
6.5 Conclusions 226
Acknowledgment 226
References 226
7 Interface Engineering: A Key Aspect for the Potential Commercialization
of Printable Organic Photovoltaic Cells 235
Varun Vohra, Nur Tahirah Razali and Hideyuki Murata
7.1 Introduction 236
7.2 SD-PSCs Based on P3HT:PCBM Active Layers 240
7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of
SD-PSCs 240
7.2.2 Generation of Vertical Concentration Gradient by Addition of
Regiorandom P3HT in SD-PSCs 242
7.2.3 Generation of Vertical Concentration Gradient and Molecular
Orientation by Rubbing P3HT in SD-PSCs 246
7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation
Resulting from Active Layer/Substrate
Interactions 248
7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC
Fabrication 252
7.5 Conclusions 257
References 258
8 Structural, Optical, Electrical and Electronic Properties of PEDOT: PSS
Thin Films and Their Application in Solar Cells 263
Sheng Hsiung Chang, Cheng-Chiang Chen, Hsin-Ming Cheng and Sheng-Hui Chen
8.1 Introduction 264
8.2 Chemical Structure of PEDOT:PSS 265
8.3 Optical and Electrical Characteristics of PEDOT:PSS 267
8.4 Electronic Characteristics of PEDOT:PSS 270
8.5 Highly Conductive PEDOT:PSS Thin Films 271
8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films 273
8.6.1 Effect of PEDOT/PSS Ratio 274
8.6.2 Effect of Spin Rate 275
8.6.3 Effect of Thermal Annealing Temperature 277
8.6.4 Effects of Viscosity of PEDOT:PSS Solutions 278
8.7 Directions for Future Development 281
8.8 Conclusion 282
Reference 283
Part III Perovskites and Process Technologies for Printable Solar Cells
9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and
Applications for Solar Cells 291
Timur Sh. Atabaev and Nguyen Hoa Hong
9.1 Introduction 291
9.2 Optical Properties of Organic-Inorganic Perovskite Materials 293
9.3 Charge Transport Properties 294
9.4 Electron Transporting Materials (ETM) 295
9.5 Hole-Transporting Materials (HTM) 295
9.6 Perovskite Solar Cells Architectures 296
9.7 Perovskite Deposition Methods 298
9.8 Photoexcited States 300
9.9 Hysteresis 300
9.10 Stability in Humid Environment 302
9.11 Stability Under UV Light Exposure 302
9.12 Stability at High Temperatures 303
9.13 Additives 304
9.14 Conclusions and Outlook 305
Acknowledgment 306
References 306
10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and
Roll-to-Roll Compatible Printing/Coating Processes 313
Dechan Angmo, Mei Gao and Doojin Vak
10.1 Introduction 314
10.2 Optoelectronic Properties 316
10.3 History 317
10.4 Device Configurations 318
10.5 Functional Materials 321
10.5.1 The Organic-Inorganic Halide Perovskites 322
10.5.2 Electron-Selective Layer 324
10.5.3 Hole-Selective Layer 325
10.5.4 Transparent Electrode 325
10.5.5 Counter Electrode 326
10.6 Spin Coating 327
10.7 Roll-to-Roll Processing 331
10.8 Substrate Limitation 331
10.9 Printing and Coating Methods 333
10.9.1 Coating Methods 335
10.9.1.1 Slot-Die Coating 335
10.9.1.2 Spray Coating 339
10.9.1.3 Doctor Blade Coating 342
10.9.1.4 Knife Coating 344
10.9.1.5 Reverse Gravure Coating 345
10.9.2 Printing Methods 346
10.9.2.1 Gravure Printing 346
10.9.2.2 Flexographic Printing 347
10.9.2.3 Screen Printing 349
10.9.2.4 Inkjet Printing 350
10.10 Future Outlook 352
References 352
11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells
and Modules Based on Advanced Nanocomposite Materials 363
Theodoros Makris, Argyroula Mourtzikou, Andreas Rapsomanikis and Elias
Stathatos
11.1 Introduction 364
11.1.1 Dye-Sensitized Solar Cells 364
11.1.2 Perovskite Solar Cells 367
11.2 Inkjet Printing Process 369
11.2.1 Inkjet Printing in DSSC Technology 370
11.2.1.1 Inkjet Printing of Transition Metal Oxides 372
11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides 373
11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes 374
11.2.2 Inkjet Printing in Perovskite Solar Cell Technology 377
11.2.2.1 Inkjet Printing of Perovskite Material 378
11.3 Conclusions 379
References 379
Part IV Inorganic Materials and Process Technologies for Printable Solar
Cells 383
12 Solution-Processed Kesterite Solar Cells 385
Fangyang Liu
12.1 Introduction 385
12.2 Fundamental Aspects of Kesterite Solar Cells 386
12.2.1 Crystal Structure 386
12.2.2 Phase Space and Secondary Phases 388
12.2.3 Optical and Electrical Properties 390
12.2.4 Device Architecture 391
12.3 Keterite Absorber Deposition Strategies 393
12.4 Electrodeposition 395
12.4.1 Stacked Elemental Layer (SEL) Electrodeposition 396
12.4.2 Metallic Alloy Co-electrodeposition 398
12.4.3 Chalcogenide Co-electrodeposition 399
12.5 Direct Solution Coating 400
12.5.1 Hydrazine Solution Coating 401
12.5.2 Particulate-Based Solution Coating 402
12.5.3 Molecular-Based Solution Coating 405
12.6 Conclusion 409
References 409
13 Inorganic Hole Contacts for Perovskite Solar Cells: Towards
High-Performance Printable Solar Cells 423
Xingtian Yin and Wenxiu Que
13.1 Introduction 424
13.2 Transition Metal Oxides 426
13.2.1 Molybdenum Oxide (MoOx, x < 3) 426
13.2.2 Nickel Oxide (NiO) 428
13.2.2.1 Mesoscopic NiO Perovskite Solar Cells 428
13.2.2.2 Planar NiO Perovskite Solar Cells 429
13.2.3 Binary Copper Oxide (CuO and Cu2O) 439
13.2.4 Other Transition Metal Oxides 440
13.3 Non-Oxide Copper Compounds 440
13.3.1 Cuprous Iodide (CuI) 441
13.3.2 Cuprous Rhodanide (CuSCN) 441
13.3.3 Copper Sulfide (CuS) 442
13.3.4 CuAlO2 443
13.3.5 CuInS2 and Cu2ZnSnS4 444
13.4 Other Inorganic HTMs 444
13.4.1 PdS Quantum Dots (QDs) 444
13.4.2 Two-Dimensional (2D) Materials 445
13.5 Towards Printable Solar Cells 446
13.6 Conclusions and Perspectives 449
Acknowledgment 450
References 450
14 Electrode Materials for Printable Solar Cells 457
Lijun Hu, Ke Yang, Wei Chen, Falin Wu, Jiehao Fu, Wenbo Sun, Hongyan Huang,
Baomin Zhao, Kuan Sun and Jianyong Ouyang
14.1 Introduction 458
14.2 Transparent Conjugated Polymers 459
14.2.1 Solvent Additive Method 460
14.2.2 Post-Treatment of PEDOT:PSS Films 461
14.2.3 Printing PEDOT:PSS Inks 463
14.3 Carbon-Based Nanomaterials 463
14.3.1 Graphene 466
14.3.2 Carbon Nanotubes 472
14.4 Metallic Nanostructures 476
14.4.1 Metal Nanomeshes 476
14.4.2 Metal Nanowire Networks 480
14.4.3 Ultrathin Metal Films 482
14.5 Multilayer Thin Films 486
14.6 Printable Metal Back Electrodes 491
14.7 Carbon-Based Back Electrodes 494
14.8 Summary and Outlook 497
Acknowledgment 498
References 498
15 Photonic Crystals for Photon Management in Solar Cells 513
Shuai Zhang, Zhongze Gu and Jian-Ning Ding
15.1 Introduction 513
15.2 Fundamentals of PCs 515
15.3 Fabrication Strategies of PCs for Photovoltaics 518
15.3.1 1D Multilayer PCs 519
15.3.2 2D PCs 524
15.3.3 3D PCs 527
15.4 Different Functionalities of PCs in Solar Cells 530
15.4.1 PC Reflectors 531
15.4.2 PC Absorbers 535
15.4.3 Front-Side PCs 538
15.4.4 PCs for Other Functionalities 540
15.5 Summary and Outlook 540
Acknowledgment 542
References 542
Part I Hybrid Materials and Process Technologies for Printable Solar Cells
1 Organic and Inorganic Hybrid Solar Cells 3
Serap Güne¿ and Niyazi Serdar Sariciftci
1.1 Introduction 4
1.2 Organic/Inorganic Hybrid Solar Cells 5
1.2.1 Introduction to Hybrid Solar Cells 5
1.2.2 Hybrid Solar Cells 5
1.2.2.1 Operational Principles of Bulk
Heterojunction Hybrid Solar Cells 5
1.2.2.2 Bulk Heterojunction Hybrid Solar Cells 8
1.2.2.3 Bilayer Heterojunction Hybrid Solar Cells 12
1.2.2.4 Inverted-Type Hybrid Bulk Heterojunction Solar Cells 15
1.2.2.5 Dye-Sensitized Solar Cells 16
1.2.2.6 Perovskite Solar Cells 21
1.3 Conclusion 23
References 25
2 Solution Processing and Thin Film Formation of Hybrid Semiconductors for
Energy Applications 37
J. Ciro, J.F. Montoya, R. Betancur and F. Jaramillo
2.1 Physical Chemical Principles of Film Formation by Solution
Processes: From Suspensions of Nanoparticles and Solutions to Nucleation,
Growth, Coarsening and Microstructural Evolution of Films 38
2.2 Solution-Processing Techniques for Thin Film Deposition 40
2.2.1 Spin Coating 42
2.2.2 Doctor Blade 43
2.2.3 Slot-Die Coating 44
2.2.4 Spray Coating 46
2.3 Properties and Characterization of Thin Films: Transport, Active and
Electrode Layers in Thin Film Solar Cells 46
2.4 Understanding the Crystallization Processes in Hybrid Semiconductor
Films: Hybrid Perovskite as a Model 50
2.4.1 Thermal Transitions Revealed by DSC 50
2.4.2 Heat Transfer Processes in a Meso-Superstructured Perovskite Solar
Cell 53
2.4.3 Effect of the Annealing Process on Morphology and Crystalline
Properties of Perovskite Films 55
2.4.4 Role of Precursor Composition in the Crystallinity of Perovskite
Films: Understanding the Role of Additives and Moisture in the Final
Properties of Perovskite Layers 56
References 57
3 Organic-Inorganic Hybrid Solar Cells Based on Quantum Dots 65
Wenjin Yue
3.1 Introduction 65
3.2 Polymer/QD Solar Cells 67
3.2.1 Working Principle 67
3.2.2 Device Parameters 68
3.2.2.1 Open-Circuit Voltage (Voc) 68
3.2.2.2 Short-Circuit Current (Jsc) 68
3.2.2.3 Fill Factor (FF) 69
3.2.3 Device Structure 70
3.2.4 Progress of Polymer/QD Solar Cells 71
3.2.4.1 Device Based on Cd Compound 71
3.2.4.2 Device Based on Pb Compound 74
3.2.4.3 Device Based on CuInS2 76
3.2.5 Strategy for Improved Device Performance 78
3.2.5.1 QDs Surface Treatment 78
3.2.5.2 In-Situ Synthesis of QDs 81
3.2.5.3 Polymer End-Group Functionalization 82
3.3 Outlooks and Conclusions 83
Acknowledgment 83
4 Hole Transporting Layers in Printable Solar Cells 93
David Curiel and Miriam Más-Montoya
4.1 Introduction 94
4.2 Hole Transporting Layers in Organic Solar Cells 97
4.2.1 Utility of Hole Transporting Layers 97
4.2.1.1 Energy Level Alignment at the Interfaces and Effect on the
Open-Circuit Voltage 98
4.1.1.2 Definition of Device Polarity, Charge Transport and Use as Blocking
Layer 102
4.1.1.3 Optical Spacer 103
4.1.1.4 Modulation of the Active Layer Morphology and Use as Protective
Layer 103
4.1.2 Overview of Materials Used as Hole Transporting Layers 104
4.1.2.1 Polymers 104
4.1.2.2 Small Molecules 109
4.1.2.3 Metals 112
4.1.2.4 Metal Oxides 112
4.1.2.5 Metal Salts 116
4.1.2.6 Carbon Nanotubes 116
4.1.2.7 Graphene-Based Materials 116
4.1.2.8 Self-Assembled Monolayers 119
4.2 Hole Transporting Layers in Dye-Sensitized Solar Cells 121
4.2.1 Overview of Materials Used as Hole Transporting Layers 123
4.2.1.1 Small Molecules 123
4.2.1.2 Polymers 126
4.3 Hole Transporting Layers in Perovskite Solar Cells 127
4.3.1 Overview of Materials Used as Hole Transporting Layers 128
4.3.1.1 Small Molecules 128
4.3.1.2 Polymers 137
4.3.1.3 Metal Oxides 139
4.3.1.4 Metal Salts 140
4.3.1.5 Carbon Nanotubes 141
4.3.1.6 Graphene-Based Materials 142
4.4 Concluding Remarks 143
5 Printable Solar Cells 163
Alexander Kovalenko and Michal Hrabal
5.1 Introduction 164
5.2 Printable Solar Cells Working Principles 165
5.2.1 CIGS Solar Cells 165
5.2.2 Perovskite Solar Cells 167
5.2.3 Organic Solar Cells 170
5.2.4 Printable Charge-Carrier Selective Layers 172
5.3 Solution-Based Deposition of Thin Film Layers 173
5.3.1 Coating Techniques 174
5.3.1.1 Casting 174
5.3.1.2 Spin Coating 174
5.3.1.3 Blade Coating 176
5.3.1.4 Slot-Die Coating 177
5.3.2 Printing Techniques 179
5.3.2.1 Screen Printing 180
5.3.2.2 Gravure Printing 182
5.3.2.3 Flexographic Printing 184
5.3.2.4 Inkjet Printing 185
5.4 Characterization Techniques 189
5.4.1 Characterization of Thin Layers 189
5.4.2 Electrical Characterization of Solar Cells 190
5.5 Conclusion 194
References 197
Part II Organic Materials and Process Technologies for Printable Solar
Cells
6 Spray-Coated Organic Solar Cells 205
Yifan Zheng and Junsheng Yu
6.1 Introduction 205
6.2 Introduction of Spray-Coating Method 206
6.2.1 History of Spray Coating 206
6.2.2 Spray-Coating Equipment 206
6.2.2.1 Airbrush Spray Deposition 206
6.2.2.2 Ultrasonic Spray Deposition 209
6.2.2.3 Electrospray Deposition 210
6.2.3 Spray-Coating Treatment 212
6.2.3.1 Thermal Annealing 213
6.2.3.2 Solvent Treatments 214
6.3 Materials for Spray Coating 216
6.3.1 Organic Materials 216
6.3.2 Metal Oxide and Nanoparticles 220
6.3.3 Perovskite 222
6.4 Application of Spray Coating 224
6.5 Conclusions 226
Acknowledgment 226
References 226
7 Interface Engineering: A Key Aspect for the Potential Commercialization
of Printable Organic Photovoltaic Cells 235
Varun Vohra, Nur Tahirah Razali and Hideyuki Murata
7.1 Introduction 236
7.2 SD-PSCs Based on P3HT:PCBM Active Layers 240
7.2.1 Increase in Donor-Acceptor Interface through Nanostructuration of
SD-PSCs 240
7.2.2 Generation of Vertical Concentration Gradient by Addition of
Regiorandom P3HT in SD-PSCs 242
7.2.3 Generation of Vertical Concentration Gradient and Molecular
Orientation by Rubbing P3HT in SD-PSCs 246
7.3 High Performance BHJ-PSCs with Favorable Molecular Orientation
Resulting from Active Layer/Substrate
Interactions 248
7.4 Strongly Bond Metal Leaves as Laminated Top Electrodes for Low-Cost PSC
Fabrication 252
7.5 Conclusions 257
References 258
8 Structural, Optical, Electrical and Electronic Properties of PEDOT: PSS
Thin Films and Their Application in Solar Cells 263
Sheng Hsiung Chang, Cheng-Chiang Chen, Hsin-Ming Cheng and Sheng-Hui Chen
8.1 Introduction 264
8.2 Chemical Structure of PEDOT:PSS 265
8.3 Optical and Electrical Characteristics of PEDOT:PSS 267
8.4 Electronic Characteristics of PEDOT:PSS 270
8.5 Highly Conductive PEDOT:PSS Thin Films 271
8.6 Hole-Transporting Materials: PEDOT:PSS Thin Films 273
8.6.1 Effect of PEDOT/PSS Ratio 274
8.6.2 Effect of Spin Rate 275
8.6.3 Effect of Thermal Annealing Temperature 277
8.6.4 Effects of Viscosity of PEDOT:PSS Solutions 278
8.7 Directions for Future Development 281
8.8 Conclusion 282
Reference 283
Part III Perovskites and Process Technologies for Printable Solar Cells
9 Organometal Trihalide Perovskite Absorbers: Optoelectronic Properties and
Applications for Solar Cells 291
Timur Sh. Atabaev and Nguyen Hoa Hong
9.1 Introduction 291
9.2 Optical Properties of Organic-Inorganic Perovskite Materials 293
9.3 Charge Transport Properties 294
9.4 Electron Transporting Materials (ETM) 295
9.5 Hole-Transporting Materials (HTM) 295
9.6 Perovskite Solar Cells Architectures 296
9.7 Perovskite Deposition Methods 298
9.8 Photoexcited States 300
9.9 Hysteresis 300
9.10 Stability in Humid Environment 302
9.11 Stability Under UV Light Exposure 302
9.12 Stability at High Temperatures 303
9.13 Additives 304
9.14 Conclusions and Outlook 305
Acknowledgment 306
References 306
10 Organic-Inorganic Hybrid Perovskite Solar Cells with Scalable and
Roll-to-Roll Compatible Printing/Coating Processes 313
Dechan Angmo, Mei Gao and Doojin Vak
10.1 Introduction 314
10.2 Optoelectronic Properties 316
10.3 History 317
10.4 Device Configurations 318
10.5 Functional Materials 321
10.5.1 The Organic-Inorganic Halide Perovskites 322
10.5.2 Electron-Selective Layer 324
10.5.3 Hole-Selective Layer 325
10.5.4 Transparent Electrode 325
10.5.5 Counter Electrode 326
10.6 Spin Coating 327
10.7 Roll-to-Roll Processing 331
10.8 Substrate Limitation 331
10.9 Printing and Coating Methods 333
10.9.1 Coating Methods 335
10.9.1.1 Slot-Die Coating 335
10.9.1.2 Spray Coating 339
10.9.1.3 Doctor Blade Coating 342
10.9.1.4 Knife Coating 344
10.9.1.5 Reverse Gravure Coating 345
10.9.2 Printing Methods 346
10.9.2.1 Gravure Printing 346
10.9.2.2 Flexographic Printing 347
10.9.2.3 Screen Printing 349
10.9.2.4 Inkjet Printing 350
10.10 Future Outlook 352
References 352
11 Inkjet Printable Processes for Dye-Sensitized and Perovskite Solar Cells
and Modules Based on Advanced Nanocomposite Materials 363
Theodoros Makris, Argyroula Mourtzikou, Andreas Rapsomanikis and Elias
Stathatos
11.1 Introduction 364
11.1.1 Dye-Sensitized Solar Cells 364
11.1.2 Perovskite Solar Cells 367
11.2 Inkjet Printing Process 369
11.2.1 Inkjet Printing in DSSC Technology 370
11.2.1.1 Inkjet Printing of Transition Metal Oxides 372
11.2.1.2 Inkjet Printing of Dyes on Semiconducting Oxides 373
11.2.1.3 Inkjet Printing of Ionic Liquid-Based Electrolytes 374
11.2.2 Inkjet Printing in Perovskite Solar Cell Technology 377
11.2.2.1 Inkjet Printing of Perovskite Material 378
11.3 Conclusions 379
References 379
Part IV Inorganic Materials and Process Technologies for Printable Solar
Cells 383
12 Solution-Processed Kesterite Solar Cells 385
Fangyang Liu
12.1 Introduction 385
12.2 Fundamental Aspects of Kesterite Solar Cells 386
12.2.1 Crystal Structure 386
12.2.2 Phase Space and Secondary Phases 388
12.2.3 Optical and Electrical Properties 390
12.2.4 Device Architecture 391
12.3 Keterite Absorber Deposition Strategies 393
12.4 Electrodeposition 395
12.4.1 Stacked Elemental Layer (SEL) Electrodeposition 396
12.4.2 Metallic Alloy Co-electrodeposition 398
12.4.3 Chalcogenide Co-electrodeposition 399
12.5 Direct Solution Coating 400
12.5.1 Hydrazine Solution Coating 401
12.5.2 Particulate-Based Solution Coating 402
12.5.3 Molecular-Based Solution Coating 405
12.6 Conclusion 409
References 409
13 Inorganic Hole Contacts for Perovskite Solar Cells: Towards
High-Performance Printable Solar Cells 423
Xingtian Yin and Wenxiu Que
13.1 Introduction 424
13.2 Transition Metal Oxides 426
13.2.1 Molybdenum Oxide (MoOx, x < 3) 426
13.2.2 Nickel Oxide (NiO) 428
13.2.2.1 Mesoscopic NiO Perovskite Solar Cells 428
13.2.2.2 Planar NiO Perovskite Solar Cells 429
13.2.3 Binary Copper Oxide (CuO and Cu2O) 439
13.2.4 Other Transition Metal Oxides 440
13.3 Non-Oxide Copper Compounds 440
13.3.1 Cuprous Iodide (CuI) 441
13.3.2 Cuprous Rhodanide (CuSCN) 441
13.3.3 Copper Sulfide (CuS) 442
13.3.4 CuAlO2 443
13.3.5 CuInS2 and Cu2ZnSnS4 444
13.4 Other Inorganic HTMs 444
13.4.1 PdS Quantum Dots (QDs) 444
13.4.2 Two-Dimensional (2D) Materials 445
13.5 Towards Printable Solar Cells 446
13.6 Conclusions and Perspectives 449
Acknowledgment 450
References 450
14 Electrode Materials for Printable Solar Cells 457
Lijun Hu, Ke Yang, Wei Chen, Falin Wu, Jiehao Fu, Wenbo Sun, Hongyan Huang,
Baomin Zhao, Kuan Sun and Jianyong Ouyang
14.1 Introduction 458
14.2 Transparent Conjugated Polymers 459
14.2.1 Solvent Additive Method 460
14.2.2 Post-Treatment of PEDOT:PSS Films 461
14.2.3 Printing PEDOT:PSS Inks 463
14.3 Carbon-Based Nanomaterials 463
14.3.1 Graphene 466
14.3.2 Carbon Nanotubes 472
14.4 Metallic Nanostructures 476
14.4.1 Metal Nanomeshes 476
14.4.2 Metal Nanowire Networks 480
14.4.3 Ultrathin Metal Films 482
14.5 Multilayer Thin Films 486
14.6 Printable Metal Back Electrodes 491
14.7 Carbon-Based Back Electrodes 494
14.8 Summary and Outlook 497
Acknowledgment 498
References 498
15 Photonic Crystals for Photon Management in Solar Cells 513
Shuai Zhang, Zhongze Gu and Jian-Ning Ding
15.1 Introduction 513
15.2 Fundamentals of PCs 515
15.3 Fabrication Strategies of PCs for Photovoltaics 518
15.3.1 1D Multilayer PCs 519
15.3.2 2D PCs 524
15.3.3 3D PCs 527
15.4 Different Functionalities of PCs in Solar Cells 530
15.4.1 PC Reflectors 531
15.4.2 PC Absorbers 535
15.4.3 Front-Side PCs 538
15.4.4 PCs for Other Functionalities 540
15.5 Summary and Outlook 540
Acknowledgment 542
References 542