Tomaso Aste (University College London)
Probabilistic Data-Driven Modeling
Tomaso Aste (University College London)
Probabilistic Data-Driven Modeling
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book introduces a powerful selection of methodologies and approaches for constructing models from data from various domains from statistics to complexity science. This book uses the estimation of multivariate probabilities as a frame of reference for the entire domain, from linear regressions to deep learning neural networks.
Andere Kunden interessierten sich auch für
- Steve Presse (Arizona State University)Data Modeling for the Sciences57,99 €
- Emanuel Kulczycki (Poland Adam Mickiewicz University)The Evaluation Game99,99 €
- Emanuel Kulczycki (Poland Adam Mickiewicz University)The Evaluation Game47,99 €
- Lilia M. Woods (University of South Florida)Contemporary Quantum Mechanics in Practice29,99 €
- Dragan Huterer (Ann Arbor University of Michigan)A Course in Cosmology49,99 €
- Bertie J. Weddell (Washington State University)Conservation in the Context of a Changing World61,99 €
- Slobodan Perovic (University of Belgrade)The Cosmic Microwave Background47,99 €
-
-
-
This book introduces a powerful selection of methodologies and approaches for constructing models from data from various domains from statistics to complexity science. This book uses the estimation of multivariate probabilities as a frame of reference for the entire domain, from linear regressions to deep learning neural networks.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 452
- Erscheinungstermin: 10. Juli 2025
- Englisch
- Abmessung: 260mm x 186mm x 32mm
- Gewicht: 1006g
- ISBN-13: 9781009221856
- ISBN-10: 100922185X
- Artikelnr.: 70892220
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 452
- Erscheinungstermin: 10. Juli 2025
- Englisch
- Abmessung: 260mm x 186mm x 32mm
- Gewicht: 1006g
- ISBN-13: 9781009221856
- ISBN-10: 100922185X
- Artikelnr.: 70892220
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Tomaso Aste is Professor of Complexity Science at the Computer Science Department at University College London. A trained physicist, he has substantially contributed to research in complex systems modeling, from materials to markets. He has authored over 300 research papers and several books and collaborated with over 100 researchers across all continents. Professor Aste is founder and Head of the Financial Computing and Analytics Group at UCL, he is founder and editor-in-chief of the journal Data-Driven Modelling.
List of symbols
Preface
Part I. Preliminary: 1. Introduction
2. Fundamentals of Probability
3. Fundamentals of machine learning
4. Fundamentals of networks
Part II. Foundations of Probabilistic Modeling: 5. Univariate probabilities
6. Multivariate probabilities
7. Entropies
8. Dependence
9. Stochastic processes and scaling laws
10. Causation
11. Networks as representations of complex systems
12. Probabilistic modeling with network representations
Part III. Model Construction from Data: 13. Nonparametric estimation of univariate probabilities from data
14. Parametric estimation of univariate probabilities from data
15. Estimation of multivariate probabilities from data
16. Time series and probabilistic modeling
17. Construction of network representations from data
18. Assessing the goodness of models
Part IV. Closing: 19. Conclusions
Part V. Appendices: Appendix A. Essentials on probability theory
Appendix B. Finding roots of non-linear equations
Appendix C. Some optimization problems and methods
Appendix D. Principal components analysis
Appendix E. Random forest
Appendix F. Expectation maximization (EM)
Appendix G. Bad modeling
References
Index.
Preface
Part I. Preliminary: 1. Introduction
2. Fundamentals of Probability
3. Fundamentals of machine learning
4. Fundamentals of networks
Part II. Foundations of Probabilistic Modeling: 5. Univariate probabilities
6. Multivariate probabilities
7. Entropies
8. Dependence
9. Stochastic processes and scaling laws
10. Causation
11. Networks as representations of complex systems
12. Probabilistic modeling with network representations
Part III. Model Construction from Data: 13. Nonparametric estimation of univariate probabilities from data
14. Parametric estimation of univariate probabilities from data
15. Estimation of multivariate probabilities from data
16. Time series and probabilistic modeling
17. Construction of network representations from data
18. Assessing the goodness of models
Part IV. Closing: 19. Conclusions
Part V. Appendices: Appendix A. Essentials on probability theory
Appendix B. Finding roots of non-linear equations
Appendix C. Some optimization problems and methods
Appendix D. Principal components analysis
Appendix E. Random forest
Appendix F. Expectation maximization (EM)
Appendix G. Bad modeling
References
Index.
List of symbols
Preface
Part I. Preliminary: 1. Introduction
2. Fundamentals of Probability
3. Fundamentals of machine learning
4. Fundamentals of networks
Part II. Foundations of Probabilistic Modeling: 5. Univariate probabilities
6. Multivariate probabilities
7. Entropies
8. Dependence
9. Stochastic processes and scaling laws
10. Causation
11. Networks as representations of complex systems
12. Probabilistic modeling with network representations
Part III. Model Construction from Data: 13. Nonparametric estimation of univariate probabilities from data
14. Parametric estimation of univariate probabilities from data
15. Estimation of multivariate probabilities from data
16. Time series and probabilistic modeling
17. Construction of network representations from data
18. Assessing the goodness of models
Part IV. Closing: 19. Conclusions
Part V. Appendices: Appendix A. Essentials on probability theory
Appendix B. Finding roots of non-linear equations
Appendix C. Some optimization problems and methods
Appendix D. Principal components analysis
Appendix E. Random forest
Appendix F. Expectation maximization (EM)
Appendix G. Bad modeling
References
Index.
Preface
Part I. Preliminary: 1. Introduction
2. Fundamentals of Probability
3. Fundamentals of machine learning
4. Fundamentals of networks
Part II. Foundations of Probabilistic Modeling: 5. Univariate probabilities
6. Multivariate probabilities
7. Entropies
8. Dependence
9. Stochastic processes and scaling laws
10. Causation
11. Networks as representations of complex systems
12. Probabilistic modeling with network representations
Part III. Model Construction from Data: 13. Nonparametric estimation of univariate probabilities from data
14. Parametric estimation of univariate probabilities from data
15. Estimation of multivariate probabilities from data
16. Time series and probabilistic modeling
17. Construction of network representations from data
18. Assessing the goodness of models
Part IV. Closing: 19. Conclusions
Part V. Appendices: Appendix A. Essentials on probability theory
Appendix B. Finding roots of non-linear equations
Appendix C. Some optimization problems and methods
Appendix D. Principal components analysis
Appendix E. Random forest
Appendix F. Expectation maximization (EM)
Appendix G. Bad modeling
References
Index.