Hilbert spaces of Hilbert space valued functions.- On the integrability of Gaussian random vectors.- Infinite dimensional newtonian potentials.- Multiparameter processes and vector-valued processes.- On geometry of Orlicz spaces.- The generalized domain of attraction of spherically symmetric stable laws on ?d.- A class of convolution semi-groups of measures on a Lie group.- Convergence of two-sample empirical processes.- V-decomposable measures on hilbert spaces.- On stability of probability measures in euclidean spaces.- Fourier-wiener transform on brownian functionals.- On unconditional convergence of random series in Banach spaces.- p-Stable measures and p-absolutely summing operators.- Support and seminorm integrability theorems for r-semistable probability measures on LCTVS.- Remark on the extrapolation of Banach space valued stationary processes.- Dilations with operator multipliers.- On the construction of Wold-Cram¿decomposition for bivariate stationary processes.- Representation of a bounded operator as a finite linear combination of projectors and some inequalities for a functional on B(H).- The rates of convergence in the central limit theorem in Banach spaces.- The generalized anscombe condition and its applications in random limit theorems.- On moving average representations of Banach-space valued stationary processes over LCA-groups.- Dilations of reproducing kernels.- Remarks on pettis integrability of cylindrical processes.- A probabilitistic characterization of unconditionally summing operators.- On operator characterization of AM- and AL-spaces.- On nuclear covariance operators.- On symmetric stable measures with discrete spectral mlasure on banach spaces.- A characterization of some probability distributions.- Banach spaces related to ?-stable measures.- On series representation of second order random elements and stochastic processes.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.