Denny K S Ng, Raymond R Tan, Dominic C Y Foo, Mahmoud M El-Halwagi
Process Design Strategies for Biomass Conversion Systems
Denny K S Ng, Raymond R Tan, Dominic C Y Foo, Mahmoud M El-Halwagi
Process Design Strategies for Biomass Conversion Systems
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book covers recent developments in process systems engineering (PSE) for efficient resource use in biomass conversion systems. It provides an overview of process development in biomass conversion systems with focus on biorefineries involving the production and coproduction of fuels, heating, cooling, and chemicals. The scope includes grassroots and retrofitting applications. In order to reach high levels of processing efficiency, it also covers techniques and applications of natural-resource (mass and energy) conservation. Technical, economic, environmental, and social aspects of…mehr
Andere Kunden interessierten sich auch für
- Fausto GallucciProcess Intensification for Sustainable Energy Conversion175,99 €
- SlocumMethane and Alkane Conversion Chemistry59,99 €
- Kristjan KruusementWater conversion of oil shales and biomass26,99 €
- Methane Conversion Routes245,99 €
- Zhibao HuoDiverse Hydrogen Sources for Biomass-derivatives Conversion117,99 €
- Zhibao HuoDiverse Hydrogen Sources for Biomass-derivatives Conversion117,99 €
- Carbons for Electrochemical Energy Storage and Conversion Systems256,99 €
-
-
-
This book covers recent developments in process systems engineering (PSE) for efficient resource use in biomass conversion systems. It provides an overview of process development in biomass conversion systems with focus on biorefineries involving the production and coproduction of fuels, heating, cooling, and chemicals. The scope includes grassroots and retrofitting applications. In order to reach high levels of processing efficiency, it also covers techniques and applications of natural-resource (mass and energy) conservation. Technical, economic, environmental, and social aspects of biorefineries are discussed and reconciled. The assessment scales vary from unit- to process- and life-cycle or supply chain levels. The chapters are written by leading experts from around the world, and present an integrated set of contributions. Providing a comprehensive, multi-dimensional analysis of various aspects of bioenergy systems, the book is suitable for both academic researchers and energy professionals in industry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons / Wiley
- Seitenzahl: 384
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 244mm x 170mm x 20mm
- Gewicht: 612g
- ISBN-13: 9781118699157
- ISBN-10: 1118699157
- Artikelnr.: 43000268
- Verlag: John Wiley & Sons / Wiley
- Seitenzahl: 384
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 244mm x 170mm x 20mm
- Gewicht: 612g
- ISBN-13: 9781118699157
- ISBN-10: 1118699157
- Artikelnr.: 43000268
Denny Ng is a Professor at the Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus. Raymond R. Tan is a University Fellow and Professor of Chemical Engineering at De La Salle University, Manila, Philippines. He is also Director of that institution's Center for Engineering and Sustainable Development Research. His main research interests are process systems engineering, life cycle assessment and pinch analysis. Dominic Foo is a Professor of Process Design and Integration at the University of Nottingham Malaysia Campus. He is a world leading researcher in resource conservation with process integration techniques, and has two forthcoming books and over 180 scientific papers. He is the winner of the Innovator of the Year Award 2009 (Institution of Chemical Engineers, UK) 2010 Young Engineer Award (Institution of Engineers Malaysia (IEM), Outstanding Young Malaysian Award 2012 (Junior Chamber International, JCI) and winner of the SCEJ Award for Outstanding Asian Researcher and Engineer 2013 (Society of Chemical Engineers, Japan). Mahmoud M. El-Halwagi is Professor at the Artie McFerrin Department of Chemical Engineering at Texas A&M University. Prof El-Halwagi is the author of three textbooks on process integration and sustainable design and more than a 150 papers and book chapters in the fields of sustainability, biorefining, and integrated process design.
List of Contributors xiii
Preface xvii
Acknowledgments xxi
Part 1 Process Design Tools for Biomass Conversion Systems 1
1 Early?-Stage Design and Analysis of Biorefinery Networks 3
Peam Cheali, Alberto Quaglia, Carina L. Gargalo, Krist V. Gernaey, Gürkan
Sin, and Rafiqul Gani
1.1 Introduction 3
1.2 Framework 5
1.2.1 Sustainability Analysis 10
1.2.2 Environmental Impact Assessment 12
1.3 Application: Early?-Stage Design and Analysis of a Lignocellulosic
Biorefinery 15
1.3.1 Biorefinery Networks and Identification of the Optimal Processing
Paths 15
1.3.2 Sustainability Analysis with Respect to Resource Consumption and
Environmental Impact 29
1.4 Conclusion 34
Nomenclature 35
References 37
2 Application of a Hierarchical Approach for the Synthesis of Biorefineries
39
Carolina Conde?-Mejía, Arturo Jiménez?-Gutiérrez, and Mahmoud M.
El?-Halwagi
2.1 Introduction 39
2.2 Problem Statement 41
2.3 General Methodology 42
2.4 Simulation of Flowsheets 44
2.5 Results and Discussion 49
2.5.1 Level 1 49
2.5.2 Level 2 51
2.5.3 Level 3 51
2.5.4 Level 4 53
2.5.5 Level 5 55
2.5.6 Level 6 56
2.6 Conclusions 57
References 57
3 A Systematic Approach for Synthesis of an Integrated Palm Oil?-Based
Biorefinery 63
Rex T. L. Ng and Denny K. S. Ng
3.1 Introduction 63
3.2 Problem Statement 66
3.3 Problem Formulation 67
3.4 Case Study 70
3.5 Conclusions 75
References 75
4 Design Strategies for Integration of Biorefinery Concepts at Existing
Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene
from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical
Cluster 77
Roman Hackl and Simon Harvey
4.1 Introduction 77
4.1.1 Biorefinery Concepts 77
4.1.2 Advantages of Co?]locating Biorefinery Operations at an Industrial
Cluster Site 79
4.1.3 Ethylene Production from Biomass Feedstock 79
4.1.4 Design Strategy 82
4.2 Methodology 84
4.2.1 Process Simulation 85
4.2.2 Performance Indicator for Heat Integration Opportunities 88
4.3 Results 90
4.3.1 Process Simulation 90
4.3.2 Integration of Separate Ethanol and Ethylene Production Processes 90
4.3.3 Material and Heat Integration of the Two Processes 92
4.3.4 Integration Opportunities with the Existing Chemical Cluster 93
4.3.5 Performance Indicator for Heat Integration Opportunities 96
4.4 Conclusions and Discussion 96
Acknowledgements 97
Appendix 98
Nomenclature 100
References 100
5 Synthesis of Biomass?-Based Tri?-generation Systems with Variations in
Biomass Supply and Energy Demand 103
Viknesh Andiappan, Denny K. S. Ng, and Santanu Bandyopadhyay
5.1 Introduction 103
5.2 Problem Statement 106
5.3 Multi?]period Optimization Formulation 107
5.3.1 Material Balance 108
5.3.2 Energy Balance 109
5.3.3 Economic Analysis 110
5.4 Case Study 112
5.5 Analysis of the Optimization Results 122
5.6 Conclusion and Future Work 123
Appendix A 124
Nomenclature 128
References 129
Part 2 Regional Biomass Supply Chains and Risk Management 133
6 Large?-Scale Cultivation of Microalgae for Fuel 135
Christina E. Canter, Luis F. Razon, and Paul Blowers
6.1 Introduction 135
6.2 Cultivation 137
6.2.1 Organisms for Growth 137
6.2.2 Selection of a Species for Growth 138
6.2.3 Types of Growth Systems 139
6.2.4 Nutrients, Water, and Carbon Dioxide for Growth 142
6.2.5 Large?]Scale Commercial Microalgae Growth 143
6.3 Harvesting and Dewatering 144
6.3.1 Separation Characteristics of Various Species 144
6.3.2 Gravity Sedimentation 144
6.3.3 Flocculation 144
6.3.4 Dissolved Air Flotation 145
6.3.5 Centrifugation 145
6.3.6 Filtration 146
6.3.7 Electrocoagulation 146
6.4 Conversion to Products 146
6.4.1 Utilization of the Lipid Fraction (Biodiesel) 146
6.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) 151
6.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) 153
6.4.4 Thermochemical Conversion 154
6.5 Conclusions 156
Acknowledgments 157
References 157
7 Optimal Planning of Sustainable Supply Chains for the Production of
Ambrox based on Ageratina jocotepecana in Mexico 161
Sergio I. Martínez?-Guido, J. Betzabe González?-Campos, Rosa E. Del Río,
José M. Ponce?-Ortega, Fabricio Nápoles?-Rivera, and Medardo
Serna?-González
7.1 Introduction 161
7.2 Ambrox Supply Chain 162
7.3 Biomass Cultivation 163
7.4 Transportation System 165
7.5 Ambrox Production 165
7.6 Bioethanol Production 168
7.7 Supply Chain Optimization Model 168
7.8 Case Study 175
7.9 Conclusions 179
Acknowledgments 179
Nomenclature 179
References 181
8 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass
Supply Chains 183
Krista Danielle S. Yu, Kathleen B. Aviso, Mustafa Kamal Abdul Aziz, Noor
Azian Morad, Michael Angelo B. Promentilla, Joost R. Santos, and Raymond R.
Tan
8.1 Introduction 183
8.2 Input-Output Model 186
8.3 Inoperability Input-Output Modeling 188
8.3.1 Inoperability 189
8.3.2 Interdependency Matrix 189
8.3.3 Perturbation 189
8.3.4 Economic Loss 189
8.4 Illustrative Example 190
8.5 Case Study 1 193
8.6 Case Study 2 195
8.7 Conclusions 203
8.8 Further Reading 204
Appendix A LINGO Code for Illustrative Example 204
Appendix B LINGO Code for Case Study 1 206
Appendix C Interval Arithmetic 208
Appendix D Analytic Hierarchy Process 208
Nomenclature 210
References 210
Part 3 Other Applications of Biomass Conversion Systems 215
9 Process Systems Engineering Tools for Biomass Polygeneration Systems with
Carbon Capture and Reuse 217
Jhuma Sadhukhan, Kok Siew Ng, and Elias Martinez?-Hernandez
9.1 Introduction 217
9.2 Production Using Carbon Dioxide 218
9.2.1 Chemical Production from Carbon Dioxide 218
9.2.2 Material Production from Carbon Dioxide 219
9.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse
220
9.3.1 Techno?]economic Analysis Tools for Carbon Dioxide Capture and Reuse
in Integrated Flowsheet 220
9.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in
Integrated Flowsheet 228
9.4.1 Overview of the Methodology for CO2 Integration 231
9.4.2 Case Study: CO2 Utilisation and Integration in an Algae?]Based
Biorefinery 236
9.5 Conclusions 244
References 244
10 Biomass?-Fueled Organic Rankine Cycle?]Based Cogeneration System 247
Nishith B. Desai and Santanu Bandyopadhyay
10.1 Introduction 247
10.2 Working Fluids for ORC 248
10.3 Expanders for ORC 250
10.4 Existing Biomass?]Fueled ORC?-Based Cogeneration Plants 251
10.5 Different Configurations of ORC 253
10.5.1 Regeneration Using an Internal Heat Exchanger 254
10.5.2 Turbine Bleeding 254
10.5.3 Turbine Bleeding and Regeneration 255
10.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and
Regeneration 255
10.6 Process Description 257
10.7 Illustrative Example 258
10.8 Conclusions 260
References 260
11 Novel Methodologies for Optimal Product Design from Biomass 263
Lik Yin Ng, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng
11.1 Introduction 263
11.2 CAMD 266
11.2.1 Signature?-Based Molecular Design 267
11.2.2 Multi?-objective Chemical Product Design with Consideration of
Property Prediction Uncertainty 269
11.3 Two?-Stage Optimisation Approach for Optimal Product Design from
Biomass 270
11.3.1 Stage 1: Product Design 271
11.3.2 Stage 2: Integrated Biorefinery Design 280
11.4 Case Study 282
11.4.1 Design of Optimal Product 282
11.4.2 Selection of Optimal Conversion Pathway 288
11.5 Conclusions 295
11.6 Future Opportunities 295
Nomenclature 295
Appendix 297
References 306
12 The Role of Process Integration in Reviewing and Comparing Biorefinery
Processing Routes: The Case of Xylitol 309
Aikaterini D. Mountraki, Konstantinos R. Koutsospyros, and Antonis C.
Kokossis
12.1 Introduction 309
12.2 Motivating Example 310
12.3 The Three?]Layer Approach 310
12.4 Production Paths to Xylitol 313
12.4.1 Catalytic Process 315
12.4.2 Biotechnological Process 316
12.5 Scope for Process and Energy Integration 317
12.5.1 Catalytic Process 318
12.5.2 Biotechnological Process 320
12.5.3 Summarizing Results 322
12.6 Conclusion 325
Acknowledgment 325
References 325
13 Determination of Optimum Condition for the Production of Rice
Husk?-Derived Bio?]oil by Slow Pyrolysis Process 329
Suzana Yusup, Chung Loong Yiin, Chiang Jinn Tan, and Bawadi Abdullah
13.1 Introduction 329
13.2 Experimental Study 331
13.2.1 Biomass Preparation and Characterization 331
13.2.2 Experimental Procedure 332
13.2.3 Equipment 332
13.2.4 Characterization of Bio?]oil 333
13.3 Results and Discussion 333
13.3.1 Characterization of RH 333
13.3.2 Characterization of Bio?]oil 333
13.3.3 Parametric Analysis 335
13.3.4 Field Emission Scanning Electron Microscope 336
13.3.5 Chemical Composition (GC-MS) Analysis 337
13.4 Conclusion 338
Acknowledgement 339
References 339
14 Overview of Safety and Health Assessment for Biofuel Production
Technologies 341
Mimi H. Hassim, Weng Hui Liew, and Denny K. S. Ng
14.1 Introduction 341
14.2 Inherent Safety in Process Design 343
14.3 Inherent Occupational Health in Process Design 344
14.4 Design Paradox 345
14.5 Introduction to Biofuel Technologies 347
14.6 Safety Assessment of Biofuel Production Technologies 348
14.7 Health Assessment of Biofuel Production Technologies 350
14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel
Production Technologies 351
14.9 Conclusions 354
References 354
Index 359
Preface xvii
Acknowledgments xxi
Part 1 Process Design Tools for Biomass Conversion Systems 1
1 Early?-Stage Design and Analysis of Biorefinery Networks 3
Peam Cheali, Alberto Quaglia, Carina L. Gargalo, Krist V. Gernaey, Gürkan
Sin, and Rafiqul Gani
1.1 Introduction 3
1.2 Framework 5
1.2.1 Sustainability Analysis 10
1.2.2 Environmental Impact Assessment 12
1.3 Application: Early?-Stage Design and Analysis of a Lignocellulosic
Biorefinery 15
1.3.1 Biorefinery Networks and Identification of the Optimal Processing
Paths 15
1.3.2 Sustainability Analysis with Respect to Resource Consumption and
Environmental Impact 29
1.4 Conclusion 34
Nomenclature 35
References 37
2 Application of a Hierarchical Approach for the Synthesis of Biorefineries
39
Carolina Conde?-Mejía, Arturo Jiménez?-Gutiérrez, and Mahmoud M.
El?-Halwagi
2.1 Introduction 39
2.2 Problem Statement 41
2.3 General Methodology 42
2.4 Simulation of Flowsheets 44
2.5 Results and Discussion 49
2.5.1 Level 1 49
2.5.2 Level 2 51
2.5.3 Level 3 51
2.5.4 Level 4 53
2.5.5 Level 5 55
2.5.6 Level 6 56
2.6 Conclusions 57
References 57
3 A Systematic Approach for Synthesis of an Integrated Palm Oil?-Based
Biorefinery 63
Rex T. L. Ng and Denny K. S. Ng
3.1 Introduction 63
3.2 Problem Statement 66
3.3 Problem Formulation 67
3.4 Case Study 70
3.5 Conclusions 75
References 75
4 Design Strategies for Integration of Biorefinery Concepts at Existing
Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene
from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical
Cluster 77
Roman Hackl and Simon Harvey
4.1 Introduction 77
4.1.1 Biorefinery Concepts 77
4.1.2 Advantages of Co?]locating Biorefinery Operations at an Industrial
Cluster Site 79
4.1.3 Ethylene Production from Biomass Feedstock 79
4.1.4 Design Strategy 82
4.2 Methodology 84
4.2.1 Process Simulation 85
4.2.2 Performance Indicator for Heat Integration Opportunities 88
4.3 Results 90
4.3.1 Process Simulation 90
4.3.2 Integration of Separate Ethanol and Ethylene Production Processes 90
4.3.3 Material and Heat Integration of the Two Processes 92
4.3.4 Integration Opportunities with the Existing Chemical Cluster 93
4.3.5 Performance Indicator for Heat Integration Opportunities 96
4.4 Conclusions and Discussion 96
Acknowledgements 97
Appendix 98
Nomenclature 100
References 100
5 Synthesis of Biomass?-Based Tri?-generation Systems with Variations in
Biomass Supply and Energy Demand 103
Viknesh Andiappan, Denny K. S. Ng, and Santanu Bandyopadhyay
5.1 Introduction 103
5.2 Problem Statement 106
5.3 Multi?]period Optimization Formulation 107
5.3.1 Material Balance 108
5.3.2 Energy Balance 109
5.3.3 Economic Analysis 110
5.4 Case Study 112
5.5 Analysis of the Optimization Results 122
5.6 Conclusion and Future Work 123
Appendix A 124
Nomenclature 128
References 129
Part 2 Regional Biomass Supply Chains and Risk Management 133
6 Large?-Scale Cultivation of Microalgae for Fuel 135
Christina E. Canter, Luis F. Razon, and Paul Blowers
6.1 Introduction 135
6.2 Cultivation 137
6.2.1 Organisms for Growth 137
6.2.2 Selection of a Species for Growth 138
6.2.3 Types of Growth Systems 139
6.2.4 Nutrients, Water, and Carbon Dioxide for Growth 142
6.2.5 Large?]Scale Commercial Microalgae Growth 143
6.3 Harvesting and Dewatering 144
6.3.1 Separation Characteristics of Various Species 144
6.3.2 Gravity Sedimentation 144
6.3.3 Flocculation 144
6.3.4 Dissolved Air Flotation 145
6.3.5 Centrifugation 145
6.3.6 Filtration 146
6.3.7 Electrocoagulation 146
6.4 Conversion to Products 146
6.4.1 Utilization of the Lipid Fraction (Biodiesel) 146
6.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) 151
6.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) 153
6.4.4 Thermochemical Conversion 154
6.5 Conclusions 156
Acknowledgments 157
References 157
7 Optimal Planning of Sustainable Supply Chains for the Production of
Ambrox based on Ageratina jocotepecana in Mexico 161
Sergio I. Martínez?-Guido, J. Betzabe González?-Campos, Rosa E. Del Río,
José M. Ponce?-Ortega, Fabricio Nápoles?-Rivera, and Medardo
Serna?-González
7.1 Introduction 161
7.2 Ambrox Supply Chain 162
7.3 Biomass Cultivation 163
7.4 Transportation System 165
7.5 Ambrox Production 165
7.6 Bioethanol Production 168
7.7 Supply Chain Optimization Model 168
7.8 Case Study 175
7.9 Conclusions 179
Acknowledgments 179
Nomenclature 179
References 181
8 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass
Supply Chains 183
Krista Danielle S. Yu, Kathleen B. Aviso, Mustafa Kamal Abdul Aziz, Noor
Azian Morad, Michael Angelo B. Promentilla, Joost R. Santos, and Raymond R.
Tan
8.1 Introduction 183
8.2 Input-Output Model 186
8.3 Inoperability Input-Output Modeling 188
8.3.1 Inoperability 189
8.3.2 Interdependency Matrix 189
8.3.3 Perturbation 189
8.3.4 Economic Loss 189
8.4 Illustrative Example 190
8.5 Case Study 1 193
8.6 Case Study 2 195
8.7 Conclusions 203
8.8 Further Reading 204
Appendix A LINGO Code for Illustrative Example 204
Appendix B LINGO Code for Case Study 1 206
Appendix C Interval Arithmetic 208
Appendix D Analytic Hierarchy Process 208
Nomenclature 210
References 210
Part 3 Other Applications of Biomass Conversion Systems 215
9 Process Systems Engineering Tools for Biomass Polygeneration Systems with
Carbon Capture and Reuse 217
Jhuma Sadhukhan, Kok Siew Ng, and Elias Martinez?-Hernandez
9.1 Introduction 217
9.2 Production Using Carbon Dioxide 218
9.2.1 Chemical Production from Carbon Dioxide 218
9.2.2 Material Production from Carbon Dioxide 219
9.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse
220
9.3.1 Techno?]economic Analysis Tools for Carbon Dioxide Capture and Reuse
in Integrated Flowsheet 220
9.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in
Integrated Flowsheet 228
9.4.1 Overview of the Methodology for CO2 Integration 231
9.4.2 Case Study: CO2 Utilisation and Integration in an Algae?]Based
Biorefinery 236
9.5 Conclusions 244
References 244
10 Biomass?-Fueled Organic Rankine Cycle?]Based Cogeneration System 247
Nishith B. Desai and Santanu Bandyopadhyay
10.1 Introduction 247
10.2 Working Fluids for ORC 248
10.3 Expanders for ORC 250
10.4 Existing Biomass?]Fueled ORC?-Based Cogeneration Plants 251
10.5 Different Configurations of ORC 253
10.5.1 Regeneration Using an Internal Heat Exchanger 254
10.5.2 Turbine Bleeding 254
10.5.3 Turbine Bleeding and Regeneration 255
10.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and
Regeneration 255
10.6 Process Description 257
10.7 Illustrative Example 258
10.8 Conclusions 260
References 260
11 Novel Methodologies for Optimal Product Design from Biomass 263
Lik Yin Ng, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng
11.1 Introduction 263
11.2 CAMD 266
11.2.1 Signature?-Based Molecular Design 267
11.2.2 Multi?-objective Chemical Product Design with Consideration of
Property Prediction Uncertainty 269
11.3 Two?-Stage Optimisation Approach for Optimal Product Design from
Biomass 270
11.3.1 Stage 1: Product Design 271
11.3.2 Stage 2: Integrated Biorefinery Design 280
11.4 Case Study 282
11.4.1 Design of Optimal Product 282
11.4.2 Selection of Optimal Conversion Pathway 288
11.5 Conclusions 295
11.6 Future Opportunities 295
Nomenclature 295
Appendix 297
References 306
12 The Role of Process Integration in Reviewing and Comparing Biorefinery
Processing Routes: The Case of Xylitol 309
Aikaterini D. Mountraki, Konstantinos R. Koutsospyros, and Antonis C.
Kokossis
12.1 Introduction 309
12.2 Motivating Example 310
12.3 The Three?]Layer Approach 310
12.4 Production Paths to Xylitol 313
12.4.1 Catalytic Process 315
12.4.2 Biotechnological Process 316
12.5 Scope for Process and Energy Integration 317
12.5.1 Catalytic Process 318
12.5.2 Biotechnological Process 320
12.5.3 Summarizing Results 322
12.6 Conclusion 325
Acknowledgment 325
References 325
13 Determination of Optimum Condition for the Production of Rice
Husk?-Derived Bio?]oil by Slow Pyrolysis Process 329
Suzana Yusup, Chung Loong Yiin, Chiang Jinn Tan, and Bawadi Abdullah
13.1 Introduction 329
13.2 Experimental Study 331
13.2.1 Biomass Preparation and Characterization 331
13.2.2 Experimental Procedure 332
13.2.3 Equipment 332
13.2.4 Characterization of Bio?]oil 333
13.3 Results and Discussion 333
13.3.1 Characterization of RH 333
13.3.2 Characterization of Bio?]oil 333
13.3.3 Parametric Analysis 335
13.3.4 Field Emission Scanning Electron Microscope 336
13.3.5 Chemical Composition (GC-MS) Analysis 337
13.4 Conclusion 338
Acknowledgement 339
References 339
14 Overview of Safety and Health Assessment for Biofuel Production
Technologies 341
Mimi H. Hassim, Weng Hui Liew, and Denny K. S. Ng
14.1 Introduction 341
14.2 Inherent Safety in Process Design 343
14.3 Inherent Occupational Health in Process Design 344
14.4 Design Paradox 345
14.5 Introduction to Biofuel Technologies 347
14.6 Safety Assessment of Biofuel Production Technologies 348
14.7 Health Assessment of Biofuel Production Technologies 350
14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel
Production Technologies 351
14.9 Conclusions 354
References 354
Index 359
List of Contributors xiii
Preface xvii
Acknowledgments xxi
Part 1 Process Design Tools for Biomass Conversion Systems 1
1 Early?-Stage Design and Analysis of Biorefinery Networks 3
Peam Cheali, Alberto Quaglia, Carina L. Gargalo, Krist V. Gernaey, Gürkan
Sin, and Rafiqul Gani
1.1 Introduction 3
1.2 Framework 5
1.2.1 Sustainability Analysis 10
1.2.2 Environmental Impact Assessment 12
1.3 Application: Early?-Stage Design and Analysis of a Lignocellulosic
Biorefinery 15
1.3.1 Biorefinery Networks and Identification of the Optimal Processing
Paths 15
1.3.2 Sustainability Analysis with Respect to Resource Consumption and
Environmental Impact 29
1.4 Conclusion 34
Nomenclature 35
References 37
2 Application of a Hierarchical Approach for the Synthesis of Biorefineries
39
Carolina Conde?-Mejía, Arturo Jiménez?-Gutiérrez, and Mahmoud M.
El?-Halwagi
2.1 Introduction 39
2.2 Problem Statement 41
2.3 General Methodology 42
2.4 Simulation of Flowsheets 44
2.5 Results and Discussion 49
2.5.1 Level 1 49
2.5.2 Level 2 51
2.5.3 Level 3 51
2.5.4 Level 4 53
2.5.5 Level 5 55
2.5.6 Level 6 56
2.6 Conclusions 57
References 57
3 A Systematic Approach for Synthesis of an Integrated Palm Oil?-Based
Biorefinery 63
Rex T. L. Ng and Denny K. S. Ng
3.1 Introduction 63
3.2 Problem Statement 66
3.3 Problem Formulation 67
3.4 Case Study 70
3.5 Conclusions 75
References 75
4 Design Strategies for Integration of Biorefinery Concepts at Existing
Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene
from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical
Cluster 77
Roman Hackl and Simon Harvey
4.1 Introduction 77
4.1.1 Biorefinery Concepts 77
4.1.2 Advantages of Co?]locating Biorefinery Operations at an Industrial
Cluster Site 79
4.1.3 Ethylene Production from Biomass Feedstock 79
4.1.4 Design Strategy 82
4.2 Methodology 84
4.2.1 Process Simulation 85
4.2.2 Performance Indicator for Heat Integration Opportunities 88
4.3 Results 90
4.3.1 Process Simulation 90
4.3.2 Integration of Separate Ethanol and Ethylene Production Processes 90
4.3.3 Material and Heat Integration of the Two Processes 92
4.3.4 Integration Opportunities with the Existing Chemical Cluster 93
4.3.5 Performance Indicator for Heat Integration Opportunities 96
4.4 Conclusions and Discussion 96
Acknowledgements 97
Appendix 98
Nomenclature 100
References 100
5 Synthesis of Biomass?-Based Tri?-generation Systems with Variations in
Biomass Supply and Energy Demand 103
Viknesh Andiappan, Denny K. S. Ng, and Santanu Bandyopadhyay
5.1 Introduction 103
5.2 Problem Statement 106
5.3 Multi?]period Optimization Formulation 107
5.3.1 Material Balance 108
5.3.2 Energy Balance 109
5.3.3 Economic Analysis 110
5.4 Case Study 112
5.5 Analysis of the Optimization Results 122
5.6 Conclusion and Future Work 123
Appendix A 124
Nomenclature 128
References 129
Part 2 Regional Biomass Supply Chains and Risk Management 133
6 Large?-Scale Cultivation of Microalgae for Fuel 135
Christina E. Canter, Luis F. Razon, and Paul Blowers
6.1 Introduction 135
6.2 Cultivation 137
6.2.1 Organisms for Growth 137
6.2.2 Selection of a Species for Growth 138
6.2.3 Types of Growth Systems 139
6.2.4 Nutrients, Water, and Carbon Dioxide for Growth 142
6.2.5 Large?]Scale Commercial Microalgae Growth 143
6.3 Harvesting and Dewatering 144
6.3.1 Separation Characteristics of Various Species 144
6.3.2 Gravity Sedimentation 144
6.3.3 Flocculation 144
6.3.4 Dissolved Air Flotation 145
6.3.5 Centrifugation 145
6.3.6 Filtration 146
6.3.7 Electrocoagulation 146
6.4 Conversion to Products 146
6.4.1 Utilization of the Lipid Fraction (Biodiesel) 146
6.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) 151
6.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) 153
6.4.4 Thermochemical Conversion 154
6.5 Conclusions 156
Acknowledgments 157
References 157
7 Optimal Planning of Sustainable Supply Chains for the Production of
Ambrox based on Ageratina jocotepecana in Mexico 161
Sergio I. Martínez?-Guido, J. Betzabe González?-Campos, Rosa E. Del Río,
José M. Ponce?-Ortega, Fabricio Nápoles?-Rivera, and Medardo
Serna?-González
7.1 Introduction 161
7.2 Ambrox Supply Chain 162
7.3 Biomass Cultivation 163
7.4 Transportation System 165
7.5 Ambrox Production 165
7.6 Bioethanol Production 168
7.7 Supply Chain Optimization Model 168
7.8 Case Study 175
7.9 Conclusions 179
Acknowledgments 179
Nomenclature 179
References 181
8 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass
Supply Chains 183
Krista Danielle S. Yu, Kathleen B. Aviso, Mustafa Kamal Abdul Aziz, Noor
Azian Morad, Michael Angelo B. Promentilla, Joost R. Santos, and Raymond R.
Tan
8.1 Introduction 183
8.2 Input-Output Model 186
8.3 Inoperability Input-Output Modeling 188
8.3.1 Inoperability 189
8.3.2 Interdependency Matrix 189
8.3.3 Perturbation 189
8.3.4 Economic Loss 189
8.4 Illustrative Example 190
8.5 Case Study 1 193
8.6 Case Study 2 195
8.7 Conclusions 203
8.8 Further Reading 204
Appendix A LINGO Code for Illustrative Example 204
Appendix B LINGO Code for Case Study 1 206
Appendix C Interval Arithmetic 208
Appendix D Analytic Hierarchy Process 208
Nomenclature 210
References 210
Part 3 Other Applications of Biomass Conversion Systems 215
9 Process Systems Engineering Tools for Biomass Polygeneration Systems with
Carbon Capture and Reuse 217
Jhuma Sadhukhan, Kok Siew Ng, and Elias Martinez?-Hernandez
9.1 Introduction 217
9.2 Production Using Carbon Dioxide 218
9.2.1 Chemical Production from Carbon Dioxide 218
9.2.2 Material Production from Carbon Dioxide 219
9.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse
220
9.3.1 Techno?]economic Analysis Tools for Carbon Dioxide Capture and Reuse
in Integrated Flowsheet 220
9.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in
Integrated Flowsheet 228
9.4.1 Overview of the Methodology for CO2 Integration 231
9.4.2 Case Study: CO2 Utilisation and Integration in an Algae?]Based
Biorefinery 236
9.5 Conclusions 244
References 244
10 Biomass?-Fueled Organic Rankine Cycle?]Based Cogeneration System 247
Nishith B. Desai and Santanu Bandyopadhyay
10.1 Introduction 247
10.2 Working Fluids for ORC 248
10.3 Expanders for ORC 250
10.4 Existing Biomass?]Fueled ORC?-Based Cogeneration Plants 251
10.5 Different Configurations of ORC 253
10.5.1 Regeneration Using an Internal Heat Exchanger 254
10.5.2 Turbine Bleeding 254
10.5.3 Turbine Bleeding and Regeneration 255
10.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and
Regeneration 255
10.6 Process Description 257
10.7 Illustrative Example 258
10.8 Conclusions 260
References 260
11 Novel Methodologies for Optimal Product Design from Biomass 263
Lik Yin Ng, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng
11.1 Introduction 263
11.2 CAMD 266
11.2.1 Signature?-Based Molecular Design 267
11.2.2 Multi?-objective Chemical Product Design with Consideration of
Property Prediction Uncertainty 269
11.3 Two?-Stage Optimisation Approach for Optimal Product Design from
Biomass 270
11.3.1 Stage 1: Product Design 271
11.3.2 Stage 2: Integrated Biorefinery Design 280
11.4 Case Study 282
11.4.1 Design of Optimal Product 282
11.4.2 Selection of Optimal Conversion Pathway 288
11.5 Conclusions 295
11.6 Future Opportunities 295
Nomenclature 295
Appendix 297
References 306
12 The Role of Process Integration in Reviewing and Comparing Biorefinery
Processing Routes: The Case of Xylitol 309
Aikaterini D. Mountraki, Konstantinos R. Koutsospyros, and Antonis C.
Kokossis
12.1 Introduction 309
12.2 Motivating Example 310
12.3 The Three?]Layer Approach 310
12.4 Production Paths to Xylitol 313
12.4.1 Catalytic Process 315
12.4.2 Biotechnological Process 316
12.5 Scope for Process and Energy Integration 317
12.5.1 Catalytic Process 318
12.5.2 Biotechnological Process 320
12.5.3 Summarizing Results 322
12.6 Conclusion 325
Acknowledgment 325
References 325
13 Determination of Optimum Condition for the Production of Rice
Husk?-Derived Bio?]oil by Slow Pyrolysis Process 329
Suzana Yusup, Chung Loong Yiin, Chiang Jinn Tan, and Bawadi Abdullah
13.1 Introduction 329
13.2 Experimental Study 331
13.2.1 Biomass Preparation and Characterization 331
13.2.2 Experimental Procedure 332
13.2.3 Equipment 332
13.2.4 Characterization of Bio?]oil 333
13.3 Results and Discussion 333
13.3.1 Characterization of RH 333
13.3.2 Characterization of Bio?]oil 333
13.3.3 Parametric Analysis 335
13.3.4 Field Emission Scanning Electron Microscope 336
13.3.5 Chemical Composition (GC-MS) Analysis 337
13.4 Conclusion 338
Acknowledgement 339
References 339
14 Overview of Safety and Health Assessment for Biofuel Production
Technologies 341
Mimi H. Hassim, Weng Hui Liew, and Denny K. S. Ng
14.1 Introduction 341
14.2 Inherent Safety in Process Design 343
14.3 Inherent Occupational Health in Process Design 344
14.4 Design Paradox 345
14.5 Introduction to Biofuel Technologies 347
14.6 Safety Assessment of Biofuel Production Technologies 348
14.7 Health Assessment of Biofuel Production Technologies 350
14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel
Production Technologies 351
14.9 Conclusions 354
References 354
Index 359
Preface xvii
Acknowledgments xxi
Part 1 Process Design Tools for Biomass Conversion Systems 1
1 Early?-Stage Design and Analysis of Biorefinery Networks 3
Peam Cheali, Alberto Quaglia, Carina L. Gargalo, Krist V. Gernaey, Gürkan
Sin, and Rafiqul Gani
1.1 Introduction 3
1.2 Framework 5
1.2.1 Sustainability Analysis 10
1.2.2 Environmental Impact Assessment 12
1.3 Application: Early?-Stage Design and Analysis of a Lignocellulosic
Biorefinery 15
1.3.1 Biorefinery Networks and Identification of the Optimal Processing
Paths 15
1.3.2 Sustainability Analysis with Respect to Resource Consumption and
Environmental Impact 29
1.4 Conclusion 34
Nomenclature 35
References 37
2 Application of a Hierarchical Approach for the Synthesis of Biorefineries
39
Carolina Conde?-Mejía, Arturo Jiménez?-Gutiérrez, and Mahmoud M.
El?-Halwagi
2.1 Introduction 39
2.2 Problem Statement 41
2.3 General Methodology 42
2.4 Simulation of Flowsheets 44
2.5 Results and Discussion 49
2.5.1 Level 1 49
2.5.2 Level 2 51
2.5.3 Level 3 51
2.5.4 Level 4 53
2.5.5 Level 5 55
2.5.6 Level 6 56
2.6 Conclusions 57
References 57
3 A Systematic Approach for Synthesis of an Integrated Palm Oil?-Based
Biorefinery 63
Rex T. L. Ng and Denny K. S. Ng
3.1 Introduction 63
3.2 Problem Statement 66
3.3 Problem Formulation 67
3.4 Case Study 70
3.5 Conclusions 75
References 75
4 Design Strategies for Integration of Biorefinery Concepts at Existing
Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene
from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical
Cluster 77
Roman Hackl and Simon Harvey
4.1 Introduction 77
4.1.1 Biorefinery Concepts 77
4.1.2 Advantages of Co?]locating Biorefinery Operations at an Industrial
Cluster Site 79
4.1.3 Ethylene Production from Biomass Feedstock 79
4.1.4 Design Strategy 82
4.2 Methodology 84
4.2.1 Process Simulation 85
4.2.2 Performance Indicator for Heat Integration Opportunities 88
4.3 Results 90
4.3.1 Process Simulation 90
4.3.2 Integration of Separate Ethanol and Ethylene Production Processes 90
4.3.3 Material and Heat Integration of the Two Processes 92
4.3.4 Integration Opportunities with the Existing Chemical Cluster 93
4.3.5 Performance Indicator for Heat Integration Opportunities 96
4.4 Conclusions and Discussion 96
Acknowledgements 97
Appendix 98
Nomenclature 100
References 100
5 Synthesis of Biomass?-Based Tri?-generation Systems with Variations in
Biomass Supply and Energy Demand 103
Viknesh Andiappan, Denny K. S. Ng, and Santanu Bandyopadhyay
5.1 Introduction 103
5.2 Problem Statement 106
5.3 Multi?]period Optimization Formulation 107
5.3.1 Material Balance 108
5.3.2 Energy Balance 109
5.3.3 Economic Analysis 110
5.4 Case Study 112
5.5 Analysis of the Optimization Results 122
5.6 Conclusion and Future Work 123
Appendix A 124
Nomenclature 128
References 129
Part 2 Regional Biomass Supply Chains and Risk Management 133
6 Large?-Scale Cultivation of Microalgae for Fuel 135
Christina E. Canter, Luis F. Razon, and Paul Blowers
6.1 Introduction 135
6.2 Cultivation 137
6.2.1 Organisms for Growth 137
6.2.2 Selection of a Species for Growth 138
6.2.3 Types of Growth Systems 139
6.2.4 Nutrients, Water, and Carbon Dioxide for Growth 142
6.2.5 Large?]Scale Commercial Microalgae Growth 143
6.3 Harvesting and Dewatering 144
6.3.1 Separation Characteristics of Various Species 144
6.3.2 Gravity Sedimentation 144
6.3.3 Flocculation 144
6.3.4 Dissolved Air Flotation 145
6.3.5 Centrifugation 145
6.3.6 Filtration 146
6.3.7 Electrocoagulation 146
6.4 Conversion to Products 146
6.4.1 Utilization of the Lipid Fraction (Biodiesel) 146
6.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) 151
6.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) 153
6.4.4 Thermochemical Conversion 154
6.5 Conclusions 156
Acknowledgments 157
References 157
7 Optimal Planning of Sustainable Supply Chains for the Production of
Ambrox based on Ageratina jocotepecana in Mexico 161
Sergio I. Martínez?-Guido, J. Betzabe González?-Campos, Rosa E. Del Río,
José M. Ponce?-Ortega, Fabricio Nápoles?-Rivera, and Medardo
Serna?-González
7.1 Introduction 161
7.2 Ambrox Supply Chain 162
7.3 Biomass Cultivation 163
7.4 Transportation System 165
7.5 Ambrox Production 165
7.6 Bioethanol Production 168
7.7 Supply Chain Optimization Model 168
7.8 Case Study 175
7.9 Conclusions 179
Acknowledgments 179
Nomenclature 179
References 181
8 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass
Supply Chains 183
Krista Danielle S. Yu, Kathleen B. Aviso, Mustafa Kamal Abdul Aziz, Noor
Azian Morad, Michael Angelo B. Promentilla, Joost R. Santos, and Raymond R.
Tan
8.1 Introduction 183
8.2 Input-Output Model 186
8.3 Inoperability Input-Output Modeling 188
8.3.1 Inoperability 189
8.3.2 Interdependency Matrix 189
8.3.3 Perturbation 189
8.3.4 Economic Loss 189
8.4 Illustrative Example 190
8.5 Case Study 1 193
8.6 Case Study 2 195
8.7 Conclusions 203
8.8 Further Reading 204
Appendix A LINGO Code for Illustrative Example 204
Appendix B LINGO Code for Case Study 1 206
Appendix C Interval Arithmetic 208
Appendix D Analytic Hierarchy Process 208
Nomenclature 210
References 210
Part 3 Other Applications of Biomass Conversion Systems 215
9 Process Systems Engineering Tools for Biomass Polygeneration Systems with
Carbon Capture and Reuse 217
Jhuma Sadhukhan, Kok Siew Ng, and Elias Martinez?-Hernandez
9.1 Introduction 217
9.2 Production Using Carbon Dioxide 218
9.2.1 Chemical Production from Carbon Dioxide 218
9.2.2 Material Production from Carbon Dioxide 219
9.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse
220
9.3.1 Techno?]economic Analysis Tools for Carbon Dioxide Capture and Reuse
in Integrated Flowsheet 220
9.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in
Integrated Flowsheet 228
9.4.1 Overview of the Methodology for CO2 Integration 231
9.4.2 Case Study: CO2 Utilisation and Integration in an Algae?]Based
Biorefinery 236
9.5 Conclusions 244
References 244
10 Biomass?-Fueled Organic Rankine Cycle?]Based Cogeneration System 247
Nishith B. Desai and Santanu Bandyopadhyay
10.1 Introduction 247
10.2 Working Fluids for ORC 248
10.3 Expanders for ORC 250
10.4 Existing Biomass?]Fueled ORC?-Based Cogeneration Plants 251
10.5 Different Configurations of ORC 253
10.5.1 Regeneration Using an Internal Heat Exchanger 254
10.5.2 Turbine Bleeding 254
10.5.3 Turbine Bleeding and Regeneration 255
10.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and
Regeneration 255
10.6 Process Description 257
10.7 Illustrative Example 258
10.8 Conclusions 260
References 260
11 Novel Methodologies for Optimal Product Design from Biomass 263
Lik Yin Ng, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng
11.1 Introduction 263
11.2 CAMD 266
11.2.1 Signature?-Based Molecular Design 267
11.2.2 Multi?-objective Chemical Product Design with Consideration of
Property Prediction Uncertainty 269
11.3 Two?-Stage Optimisation Approach for Optimal Product Design from
Biomass 270
11.3.1 Stage 1: Product Design 271
11.3.2 Stage 2: Integrated Biorefinery Design 280
11.4 Case Study 282
11.4.1 Design of Optimal Product 282
11.4.2 Selection of Optimal Conversion Pathway 288
11.5 Conclusions 295
11.6 Future Opportunities 295
Nomenclature 295
Appendix 297
References 306
12 The Role of Process Integration in Reviewing and Comparing Biorefinery
Processing Routes: The Case of Xylitol 309
Aikaterini D. Mountraki, Konstantinos R. Koutsospyros, and Antonis C.
Kokossis
12.1 Introduction 309
12.2 Motivating Example 310
12.3 The Three?]Layer Approach 310
12.4 Production Paths to Xylitol 313
12.4.1 Catalytic Process 315
12.4.2 Biotechnological Process 316
12.5 Scope for Process and Energy Integration 317
12.5.1 Catalytic Process 318
12.5.2 Biotechnological Process 320
12.5.3 Summarizing Results 322
12.6 Conclusion 325
Acknowledgment 325
References 325
13 Determination of Optimum Condition for the Production of Rice
Husk?-Derived Bio?]oil by Slow Pyrolysis Process 329
Suzana Yusup, Chung Loong Yiin, Chiang Jinn Tan, and Bawadi Abdullah
13.1 Introduction 329
13.2 Experimental Study 331
13.2.1 Biomass Preparation and Characterization 331
13.2.2 Experimental Procedure 332
13.2.3 Equipment 332
13.2.4 Characterization of Bio?]oil 333
13.3 Results and Discussion 333
13.3.1 Characterization of RH 333
13.3.2 Characterization of Bio?]oil 333
13.3.3 Parametric Analysis 335
13.3.4 Field Emission Scanning Electron Microscope 336
13.3.5 Chemical Composition (GC-MS) Analysis 337
13.4 Conclusion 338
Acknowledgement 339
References 339
14 Overview of Safety and Health Assessment for Biofuel Production
Technologies 341
Mimi H. Hassim, Weng Hui Liew, and Denny K. S. Ng
14.1 Introduction 341
14.2 Inherent Safety in Process Design 343
14.3 Inherent Occupational Health in Process Design 344
14.4 Design Paradox 345
14.5 Introduction to Biofuel Technologies 347
14.6 Safety Assessment of Biofuel Production Technologies 348
14.7 Health Assessment of Biofuel Production Technologies 350
14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel
Production Technologies 351
14.9 Conclusions 354
References 354
Index 359