Prognosis Research in Healthcare
Concepts, Methods, and Impact
Herausgeber: Riley, Richard D; Moons, Karel G M; Croft, Peter; Windt, Danielle van der
Prognosis Research in Healthcare
Concepts, Methods, and Impact
Herausgeber: Riley, Richard D; Moons, Karel G M; Croft, Peter; Windt, Danielle van der
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is an introduction to the field of prognosis, and a discussion of how the information collected during prognosis research can be used to predict an individual patient's outcome. It looks at how we can develop target treatments based on prognosis research.
Andere Kunden interessierten sich auch für
- Cytokine and Chemokine Networks in Cancer147,99 €
- Gautam MehtaOst: Medical Cases for MRCP Paces Pack130,99 €
- Edward J. HanrahanAppleton & Lange's Review of Epidemiology & Biostatistics for the USMLE53,99 €
- Critical Thinking in Clinical Research116,99 €
- Health of the Nation88,99 €
- Jade ChowMedical Sciences55,99 €
- Mark ElwoodCritical Appraisal of Epidemiological Studies and Clinical Trials116,99 €
-
-
-
This book is an introduction to the field of prognosis, and a discussion of how the information collected during prognosis research can be used to predict an individual patient's outcome. It looks at how we can develop target treatments based on prognosis research.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press
- Seitenzahl: 376
- Erscheinungstermin: 24. März 2019
- Englisch
- Abmessung: 232mm x 154mm x 21mm
- Gewicht: 582g
- ISBN-13: 9780198796619
- ISBN-10: 0198796617
- Artikelnr.: 54441878
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Oxford University Press
- Seitenzahl: 376
- Erscheinungstermin: 24. März 2019
- Englisch
- Abmessung: 232mm x 154mm x 21mm
- Gewicht: 582g
- ISBN-13: 9780198796619
- ISBN-10: 0198796617
- Artikelnr.: 54441878
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Richard D. Riley is a Professor of Biostatistics at Keele University since 2014, having previous held posts at the Universities of Birmingham, Liverpool and Leicester. He is focused on statistical and methodological research for prognosis and meta-analysis, and supports clinical projects in these areas. He is also a Statistics Editor for the BMJ and a co-convenor of the Cochrane Prognosis Methods Group. Prof Riley co-leads a summer school in Prognosis Research Methods, and leads a number of statistical training courses for risk prediction and meta-analysis Professor Danielle van der Windt received her academic training in epidemiology in the Netherlands at the EMGO+ Institute for Health and Care Research of the VU University in Amsterdam where she worked in a programme of research on the diagnosis, prognosis and management of musculoskeletal disorders. She is currently a Professor of primary care epidemiology at Keele, and is part of the Centre's executive management team Professor Peter Croft is a Professor of Primary Care Epidemiology at Keele since 1994. Previously, he worked as a General Practitioner in Newcastle-under-Lyme, before training as an epidemiologist at the Medical Research Council's Environmental Epidemiology Unit in Southampton, and at the Arthritis Research Campaign's Epidemiology Research Unit in Manchester Professor Karel G.M. Moons is Professor of Clinical Epidemiology at the Julius Center for Health Sciences and Primary Care. He is Director of Research in the management team of the Julius Center, and leads the research programme 'Methodology'. Since 2005 also he has an Adjunct Professorship at VanderBilt University, Nashville, USA. Having obtained his PhD in Epidemiology at Erasmus University, Rotterdam, he has been Visiting Professor at the University of Virginia, Charlottesville, USA in 2002, and at Tokai University, Japan.
* Part 1: Introduction to prognosis and prognosis research * 1: Peter Croft
Richard D. Riley
Danielle A. van der Windt
and Karel G.M. Moons: Prognosis in healthcare * 2: Peter Croft
Richard D. Riley
Danielle A. van der Windt
Karel G.M. Moons
and Harry Hemingway: A framework for prognosis research * Part 2: Fundamental statistics for prognosis research * 3: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Fundamental statistical methods for prognosis research * 4: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Ten principles to strengthen prognosis research * Part 3: Undertaking prognosis research * 5: Danielle A. van der Windt
Harry Hemingway
Peter Croft: Overall prognosis research * 6: Richard D. Riley
Karel G.M. Moons
Jill A. Hayden
Willi Sauerbrei
Douglas G. Altman: Prognostic factor research * 7: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Kym I.E. Snell
Ewout W. Steyerberg
Douglas G. Altman
Gary S. Collins: Prognostic model research * 8: Danielle A. van der Windt
Richard D. Riley
Aroon Hingorani
Karel G.M. Moons: Predictors of treatment effect * 9: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Douglas G. Altman
Gary S. Collins: Systematic reviews and meta-analysis of prognosis research studies * Part 4: Exemplars of prognosis research impact * 10: Nadine E Foster
Danielle A. van der Windt
Kate M. Dunn
Peter Croft: Prognosis research in people with low back pain * 11: Adam Timmis
Pablo Perel
Peter Croft: Prognosis research in people with coronary heart disease * 12: Katherine I. Morley
Pablo Perel: Prognosis research in people with traumatic bleeding * Part 5: Novel Topics in prognosis research * 13: Richard D. Riley
Thomas P.A. Debray
Karel G.M.Moons: Individual participant data meta-analysis of prognosis studies * 14: Kelvin P. Jordan
Karel G.M. Moons: Electronic healthcare records and prognosis research * 15: Michael J. Crowther
Mark J Rutherford: Novel statistical methods for prognosis research * 16: Mihaela van der Schaar
Harry Hemingway: Machine learning in prognosis research
Richard D. Riley
Danielle A. van der Windt
and Karel G.M. Moons: Prognosis in healthcare * 2: Peter Croft
Richard D. Riley
Danielle A. van der Windt
Karel G.M. Moons
and Harry Hemingway: A framework for prognosis research * Part 2: Fundamental statistics for prognosis research * 3: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Fundamental statistical methods for prognosis research * 4: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Ten principles to strengthen prognosis research * Part 3: Undertaking prognosis research * 5: Danielle A. van der Windt
Harry Hemingway
Peter Croft: Overall prognosis research * 6: Richard D. Riley
Karel G.M. Moons
Jill A. Hayden
Willi Sauerbrei
Douglas G. Altman: Prognostic factor research * 7: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Kym I.E. Snell
Ewout W. Steyerberg
Douglas G. Altman
Gary S. Collins: Prognostic model research * 8: Danielle A. van der Windt
Richard D. Riley
Aroon Hingorani
Karel G.M. Moons: Predictors of treatment effect * 9: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Douglas G. Altman
Gary S. Collins: Systematic reviews and meta-analysis of prognosis research studies * Part 4: Exemplars of prognosis research impact * 10: Nadine E Foster
Danielle A. van der Windt
Kate M. Dunn
Peter Croft: Prognosis research in people with low back pain * 11: Adam Timmis
Pablo Perel
Peter Croft: Prognosis research in people with coronary heart disease * 12: Katherine I. Morley
Pablo Perel: Prognosis research in people with traumatic bleeding * Part 5: Novel Topics in prognosis research * 13: Richard D. Riley
Thomas P.A. Debray
Karel G.M.Moons: Individual participant data meta-analysis of prognosis studies * 14: Kelvin P. Jordan
Karel G.M. Moons: Electronic healthcare records and prognosis research * 15: Michael J. Crowther
Mark J Rutherford: Novel statistical methods for prognosis research * 16: Mihaela van der Schaar
Harry Hemingway: Machine learning in prognosis research
* Part 1: Introduction to prognosis and prognosis research * 1: Peter Croft
Richard D. Riley
Danielle A. van der Windt
and Karel G.M. Moons: Prognosis in healthcare * 2: Peter Croft
Richard D. Riley
Danielle A. van der Windt
Karel G.M. Moons
and Harry Hemingway: A framework for prognosis research * Part 2: Fundamental statistics for prognosis research * 3: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Fundamental statistical methods for prognosis research * 4: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Ten principles to strengthen prognosis research * Part 3: Undertaking prognosis research * 5: Danielle A. van der Windt
Harry Hemingway
Peter Croft: Overall prognosis research * 6: Richard D. Riley
Karel G.M. Moons
Jill A. Hayden
Willi Sauerbrei
Douglas G. Altman: Prognostic factor research * 7: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Kym I.E. Snell
Ewout W. Steyerberg
Douglas G. Altman
Gary S. Collins: Prognostic model research * 8: Danielle A. van der Windt
Richard D. Riley
Aroon Hingorani
Karel G.M. Moons: Predictors of treatment effect * 9: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Douglas G. Altman
Gary S. Collins: Systematic reviews and meta-analysis of prognosis research studies * Part 4: Exemplars of prognosis research impact * 10: Nadine E Foster
Danielle A. van der Windt
Kate M. Dunn
Peter Croft: Prognosis research in people with low back pain * 11: Adam Timmis
Pablo Perel
Peter Croft: Prognosis research in people with coronary heart disease * 12: Katherine I. Morley
Pablo Perel: Prognosis research in people with traumatic bleeding * Part 5: Novel Topics in prognosis research * 13: Richard D. Riley
Thomas P.A. Debray
Karel G.M.Moons: Individual participant data meta-analysis of prognosis studies * 14: Kelvin P. Jordan
Karel G.M. Moons: Electronic healthcare records and prognosis research * 15: Michael J. Crowther
Mark J Rutherford: Novel statistical methods for prognosis research * 16: Mihaela van der Schaar
Harry Hemingway: Machine learning in prognosis research
Richard D. Riley
Danielle A. van der Windt
and Karel G.M. Moons: Prognosis in healthcare * 2: Peter Croft
Richard D. Riley
Danielle A. van der Windt
Karel G.M. Moons
and Harry Hemingway: A framework for prognosis research * Part 2: Fundamental statistics for prognosis research * 3: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Fundamental statistical methods for prognosis research * 4: Richard D. Riley
Kym I.E. Snell
Karel G.M. Moons
and Thomas P.A. Debray: Ten principles to strengthen prognosis research * Part 3: Undertaking prognosis research * 5: Danielle A. van der Windt
Harry Hemingway
Peter Croft: Overall prognosis research * 6: Richard D. Riley
Karel G.M. Moons
Jill A. Hayden
Willi Sauerbrei
Douglas G. Altman: Prognostic factor research * 7: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Kym I.E. Snell
Ewout W. Steyerberg
Douglas G. Altman
Gary S. Collins: Prognostic model research * 8: Danielle A. van der Windt
Richard D. Riley
Aroon Hingorani
Karel G.M. Moons: Predictors of treatment effect * 9: Richard D. Riley
Karel G.M. Moons
Thomas P.A. Debray
Douglas G. Altman
Gary S. Collins: Systematic reviews and meta-analysis of prognosis research studies * Part 4: Exemplars of prognosis research impact * 10: Nadine E Foster
Danielle A. van der Windt
Kate M. Dunn
Peter Croft: Prognosis research in people with low back pain * 11: Adam Timmis
Pablo Perel
Peter Croft: Prognosis research in people with coronary heart disease * 12: Katherine I. Morley
Pablo Perel: Prognosis research in people with traumatic bleeding * Part 5: Novel Topics in prognosis research * 13: Richard D. Riley
Thomas P.A. Debray
Karel G.M.Moons: Individual participant data meta-analysis of prognosis studies * 14: Kelvin P. Jordan
Karel G.M. Moons: Electronic healthcare records and prognosis research * 15: Michael J. Crowther
Mark J Rutherford: Novel statistical methods for prognosis research * 16: Mihaela van der Schaar
Harry Hemingway: Machine learning in prognosis research