This title demonstrates how to develop computer programmes which solve specific engineering problems using the finite element method. It enables students, scientists and engineers to assemble their own computer programmes to produce numerical results to solve these problems. The first three editions of Programming the Finite Element Method established themselves as an authority in this area. This fully revised 4th edition includes completely rewritten programmes with a unique description and list of parallel versions of programmes in Fortran 90. The Fortran programmes and subroutines described in the text will be made available on the Internet via anonymous ftp, further adding to the value of this title.
Following the highly successful previous editions, this 4th edition contains programs and subroutine libraries fully updated to Fortran95, which are freely available on the Internet. A wide variety of problem solving capabilities are presented including structural analysis, elasticity and plasticity, construction processes in geomechanics, uncoupled and coupled steady and transient fluid flow and linear and nonlinear solid dynamics. A major new feature is the inclusion of parallelised programs, using MPI, which enable parallel processing of all types of finite element analyses. Performance evaluation shows that these programs make efficient use of parallel hardwares ranging from supercomputers to clusters of PCs.
Key features include:
- A clear outline of modular programming philosophy.
- More than 60 programs covering a wide range of problems in engineering and science.
- Results display using PostScript files.
- Exercises for students to solve.
- A simple but powerful parallelisation strategy.
These improvements all contribute to a more comprehensive book with a wide appeal. It will be of particular interest to students and practitioners in the application of finite element methods; to undergraduates and postgraduates in civil, mechanical and aeronautical engineering (stress analysis and fluid flow problems); to applied mathematicians and physicists (solution of partial differential equations); and to engineers in all of the above fields.
Following the highly successful previous editions, this 4th edition contains programs and subroutine libraries fully updated to Fortran95, which are freely available on the Internet. A wide variety of problem solving capabilities are presented including structural analysis, elasticity and plasticity, construction processes in geomechanics, uncoupled and coupled steady and transient fluid flow and linear and nonlinear solid dynamics. A major new feature is the inclusion of parallelised programs, using MPI, which enable parallel processing of all types of finite element analyses. Performance evaluation shows that these programs make efficient use of parallel hardwares ranging from supercomputers to clusters of PCs.
Key features include:
- A clear outline of modular programming philosophy.
- More than 60 programs covering a wide range of problems in engineering and science.
- Results display using PostScript files.
- Exercises for students to solve.
- A simple but powerful parallelisation strategy.
These improvements all contribute to a more comprehensive book with a wide appeal. It will be of particular interest to students and practitioners in the application of finite element methods; to undergraduates and postgraduates in civil, mechanical and aeronautical engineering (stress analysis and fluid flow problems); to applied mathematicians and physicists (solution of partial differential equations); and to engineers in all of the above fields.