It has become widely acknowledged, and almost trivial to state, that the study of the control and coordination of biological movement - motor control - is inherently multidisciplinary. From the investigation of overt functional behavior to the int- cacies of neuronal activations, the issues are numerous and invite many different levels of analysis, methods, and perspectives. Clearly, the biological movement system is simultaneously a dynamical, neurophysiological, electrophysiological, and intentional system, in short, a complex system in the technical sense of the word. While…mehr
It has become widely acknowledged, and almost trivial to state, that the study of the control and coordination of biological movement - motor control - is inherently multidisciplinary. From the investigation of overt functional behavior to the int- cacies of neuronal activations, the issues are numerous and invite many different levels of analysis, methods, and perspectives. Clearly, the biological movement system is simultaneously a dynamical, neurophysiological, electrophysiological, and intentional system, in short, a complex system in the technical sense of the word. While multidisciplinarity in motor control research is a necessity, it also presents a stumbling block to developing a coherent body of knowledge that represents the science of the control and coordination of movement. Research thrusts are developing from different academic backgrounds that are not easily understood by peers with entirely different disciplinary training. Not only for the student of motor control,but also for the advanced researcher, it can be daunting to make connections, for example, between cognitive issues like pl- ning or attention and functional properties of the peripheral nervous system, between motor cortical activation and the biomechanics of the multi-joint limb system. Yet, all of these approaches aim to shed light on the same phenomenon - the astonishing ability of biological systems to move, perceive, grow, adapt, use tools, and do infinitely more things. For the science of motor control to progress more integration of disciplines is therefore necessary.
The Nature of Motor Control.- Nature of Motor Control: Not Strictly "Motor", Not Quite "Control".- Beyond Control: The Dynamics of Brain-Body-Environment Interaction in Motor Systems.- Towards Testable Neuromechanical Control Architectures for Running.- Control from an Allometric Perspective.- Synergies: Atoms of Brain and Behavior.- Nature of Motor Control: Perspectives and Issues.- What is Encoded in the Brain?.- Past, Present, and Emerging Principles in the Neural Encoding of Movement.- From Intention to Action: Motor Cortex and the Control of Reaching Movements.- Control of Muscle Synergies by Cortical Ensembles.- Behavioral and Neurophysiological Aspects of Target Interception.- Learning from Learning: What Can Visuomotor Adaptations Tell us About the Neuronal Representation of Movement?.- The Problem of Parametric Neural Coding in the Motor System.- Perception and Action.- to Section on Perception and Action.- Mutuality in the Perception of Affordances and the Control of Movement.- Object Avoidance During Locomotion.- The Roles of Vision and Proprioception in the Planning of Reaching Movements.- Using Predictive Motor Control Processes in a Cognitive Task: Behavioral and Neuroanatomical Perspectives.- The Human Mirror Neuron System and Embodied Representations.- Disorders of the Perceptual-Motor System.- Motor Learning.- Some Contemporary Issues in Motor Learning.- Motor Learning and Consolidation: The Case of Visuomotor Rotation.- Cortical Processing during Dynamic Motor Adaptation.- Motor Learning: Changes in the Structure of Variability in a Redundant Task.- Time Scales, Difficulty/Skill Duality, and the Dynamics of Motor Learning.- Bridging of Models for Complex Movements in 3D.- Bridging of Models for Complex Movements in 3D.- The Posture-Based MotionPlanning Framework: New Findings Related to Object Manipulation, Moving Around Obstacles, Moving in Three Spatial Dimensions, and Haptic Tracking.- Grasping Occam's Razor.- Review of Models for the Generation of Multi-Joint Movements in 3-D.- The Hand as a Complex System.- Why the Hand?.- Selective Activation of Human Finger Muscles after Stroke or Amputation.- Neural Control of Hand Muscles During Prehension.- Multi-Finger Prehension: Control of a Redundant Mechanical System.- A Mathematical Approach to the Mechanical Capabilities of Limbs and Fingers.- Forty Years of Equilibrium-Point Hypothesis.- Origin and Advances of the Equilibrium-Point Hypothesis.- The Biomechanics of Force Production.- The Implications of Force Feedback for the ? Model.- Control and Calibration of Multi-Segment Reaching Movements.- The Equilibrium-Point Hypothesis - Past, Present and Future.
The Nature of Motor Control.- Nature of Motor Control: Not Strictly "Motor", Not Quite "Control".- Beyond Control: The Dynamics of Brain-Body-Environment Interaction in Motor Systems.- Towards Testable Neuromechanical Control Architectures for Running.- Control from an Allometric Perspective.- Synergies: Atoms of Brain and Behavior.- Nature of Motor Control: Perspectives and Issues.- What is Encoded in the Brain?.- Past, Present, and Emerging Principles in the Neural Encoding of Movement.- From Intention to Action: Motor Cortex and the Control of Reaching Movements.- Control of Muscle Synergies by Cortical Ensembles.- Behavioral and Neurophysiological Aspects of Target Interception.- Learning from Learning: What Can Visuomotor Adaptations Tell us About the Neuronal Representation of Movement?.- The Problem of Parametric Neural Coding in the Motor System.- Perception and Action.- to Section on Perception and Action.- Mutuality in the Perception of Affordances and the Control of Movement.- Object Avoidance During Locomotion.- The Roles of Vision and Proprioception in the Planning of Reaching Movements.- Using Predictive Motor Control Processes in a Cognitive Task: Behavioral and Neuroanatomical Perspectives.- The Human Mirror Neuron System and Embodied Representations.- Disorders of the Perceptual-Motor System.- Motor Learning.- Some Contemporary Issues in Motor Learning.- Motor Learning and Consolidation: The Case of Visuomotor Rotation.- Cortical Processing during Dynamic Motor Adaptation.- Motor Learning: Changes in the Structure of Variability in a Redundant Task.- Time Scales, Difficulty/Skill Duality, and the Dynamics of Motor Learning.- Bridging of Models for Complex Movements in 3D.- Bridging of Models for Complex Movements in 3D.- The Posture-Based MotionPlanning Framework: New Findings Related to Object Manipulation, Moving Around Obstacles, Moving in Three Spatial Dimensions, and Haptic Tracking.- Grasping Occam's Razor.- Review of Models for the Generation of Multi-Joint Movements in 3-D.- The Hand as a Complex System.- Why the Hand?.- Selective Activation of Human Finger Muscles after Stroke or Amputation.- Neural Control of Hand Muscles During Prehension.- Multi-Finger Prehension: Control of a Redundant Mechanical System.- A Mathematical Approach to the Mechanical Capabilities of Limbs and Fingers.- Forty Years of Equilibrium-Point Hypothesis.- Origin and Advances of the Equilibrium-Point Hypothesis.- The Biomechanics of Force Production.- The Implications of Force Feedback for the ? Model.- Control and Calibration of Multi-Segment Reaching Movements.- The Equilibrium-Point Hypothesis - Past, Present and Future.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826