38,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
19 °P sammeln
  • Broschiertes Buch

Dans ce livre on s'intéresse aux matrices infinies considérées comme des opérateurs linéaires dans des espaces de suites. On est ainsi conduit à l'étude des matrices de transformations et à la résolution de systèmes linéaires infinis ayant une infinité dénombrable d'équations et une infinité dénombrable d'inconnues. On donne des applications à la résolution de systèmes différentiels infinis où interviennent des matrices infinies remarquables. Ensuite, on s'intéresse à la résolution d'équations d'espaces de suites (EES) où on cherche à déterminer l'ensemble de toutes les suites qui satisfont…mehr

Produktbeschreibung
Dans ce livre on s'intéresse aux matrices infinies considérées comme des opérateurs linéaires dans des espaces de suites. On est ainsi conduit à l'étude des matrices de transformations et à la résolution de systèmes linéaires infinis ayant une infinité dénombrable d'équations et une infinité dénombrable d'inconnues. On donne des applications à la résolution de systèmes différentiels infinis où interviennent des matrices infinies remarquables. Ensuite, on s'intéresse à la résolution d'équations d'espaces de suites (EES) où on cherche à déterminer l'ensemble de toutes les suites qui satisfont l'équation. Puis, on étudie le spectre de l'opérateur de différence d'ordre un dans de nouveaux espaces de suites et on considère enfin des applications directes de la théorie des matrices infinies à des problèmes d'optimisation où on présente des résultats donnés par B. de Malafosse et A. Yassine pour déterminer le nombre de chemins comportant N arcs et reliant deux points quelconques dans le plan à l'aide d'une matrice booléenne infinie de Toeplitz.
Autorenporträt
Ce livre résume une thèse de doctorat en Mathématiques soutenuepar l'auteur en 2009, à l'université du Havre, devant le jurycomposé par: Jean-Pierre TROALLIC, Eberhard MALKOWSKY, VladimirRAKOCEVIC, Adnan YASSINE, Henri MASCART et Bruno de MALAFOSSE.