19,99 €
inkl. MwSt.

Versandfertig in über 4 Wochen
  • Broschiertes Buch

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In the mathematical field of algebraic geometry, purity is a theme covering a number of results and conjectures, which collectively address the question of proving that "when something happens, it happens in a particular codimension". For example, ramification is a phenomenon of codimension 1 (in the geometry of complex manifolds, reflecting as for Riemann surfaces that ramify at single points that it happens in real codimension two). A classical result, Zariski…mehr

Produktbeschreibung
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In the mathematical field of algebraic geometry, purity is a theme covering a number of results and conjectures, which collectively address the question of proving that "when something happens, it happens in a particular codimension". For example, ramification is a phenomenon of codimension 1 (in the geometry of complex manifolds, reflecting as for Riemann surfaces that ramify at single points that it happens in real codimension two). A classical result, Zariski Nagata purity of Masayoshi Nagata and Oscar Zariski, called also purity of the branch locus, proves that on a non-singular algebraic variety a branch locus, namely the set of points at which a morphism ramifies, must be made up purely of codimension 1 subvarieties (a Weil divisor). There have been numerous extensions of this result into theorems of commutative algebra and scheme theory, establishing purity of the branch locus in the sense of description of the restrictions on the possible "open subsets of failure" to be an étale morphism.