48,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
24 °P sammeln
  • Broschiertes Buch

Using a novel integration of mathematics and Python codes, this book illustrates the fundamental concepts that link probability, statistics, and machine learning, so that the reader can not only employ statistical and machine learning models using modern Python modules, but also understand their relative strengths and weaknesses. To clearly connect theoretical concepts to practical implementations, the author provides many worked-out examples along with "Programming Tips" that encourage the reader to write quality Python code. The entire text, including all the figures and numerical results,…mehr

Produktbeschreibung
Using a novel integration of mathematics and Python codes, this book illustrates the fundamental concepts that link probability, statistics, and machine learning, so that the reader can not only employ statistical and machine learning models using modern Python modules, but also understand their relative strengths and weaknesses. To clearly connect theoretical concepts to practical implementations, the author provides many worked-out examples along with "Programming Tips" that encourage the reader to write quality Python code. The entire text, including all the figures and numerical results, is reproducible using the Python codes provided, thus enabling readers to follow along by experimenting with the same code on their own computers.

Modern Python modules like Pandas, Sympy, Scikit-learn, Statsmodels, Scipy, Xarray, Tensorflow, and Keras are used to implement and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, interpretability, and regularization. Many abstract mathematical ideas, such as modes of convergence in probability, are explained and illustrated with concrete numerical examples. This book is suitable for anyone with undergraduate-level experience with probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

Autorenporträt
Dr. José Unpingco completed his PhD from the University of California (UCSD), San Diego and has since worked in industry as an engineer, consultant, and instructor on a wide-variety of advanced data science topics, with deep experience in machine learning. He was the onsite technical director for large-scale Signal and Image Processing for the Department of Defense (DoD) where he also spearheaded the DoD-wide adoption of scientific Python. In his time as the primary scientific Python instructor for the DoD, he taught over 600 scientists and engineers. Dr. Unpingco is currently the Vice President for Machine Learning/Data Science for the Gary and Mary West Health Institute, a non-profit Medical Research Organization in San Diego, California. He is also a lecturer at UCSD for their undergraduate and graduate Machine Learning and Data Science degree programs.
Rezensionen
"The book is aimed primarily at intermediate or advanced Python programmers ... . this work is a generally sound and comprehensive overview of the areas it covers. We recommend it to Python programmers interested in growing in these areas or experts in these areas interested in learning how to deal with them in Python." (Eugene Callahan and Yujia Zhang, Computing Reviews, October 15, 2020)