58,84 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

A q-clan with q a power of 2 is equivalent to a certain generalized quadrangle with a family of subquadrangles each associated with an oval in the Desarguesian plane of order 2. It is also equivalent to a flock of a quadratic cone, and hence to a line-spread of 3-dimensional projective space and thus to a translation plane, and more. These geometric objects are tied together by the so-called Fundamental Theorem of q-Clan Geometry. The book gives a complete proof of this theorem, followed by a detailed study of the known examples. The collineation groups of the associated generalized…mehr

Produktbeschreibung
A q-clan with q a power of 2 is equivalent to a certain generalized quadrangle with a family of subquadrangles each associated with an oval in the Desarguesian plane of order 2. It is also equivalent to a flock of a quadratic cone, and hence to a line-spread of 3-dimensional projective space and thus to a translation plane, and more. These geometric objects are tied together by the so-called Fundamental Theorem of q-Clan Geometry. The book gives a complete proof of this theorem, followed by a detailed study of the known examples. The collineation groups of the associated generalized quadrangles and the stabilizers of their associated ovals are worked out completely.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Ilaria Cardinali, Università di Siena, Italy / Stanley E. Payne, University of Colorado, Denver, CO, USA