- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Quantile regression is gradually emerging as a unified statistical methodology for estimating models of conditional quantile functions. By complementing the exclusive focus of classical least squares regression on the conditional mean, quantile regression offers a systematic strategy for examining how covariates influence the location, scale and shape of the entire response distribution. This monograph is the first comprehensive treatment of the subject, encompassing models that are linear and nonlinear, parametric and nonparametric. The author has devoted more than 25 years of research to…mehr
Andere Kunden interessierten sich auch für
- Edward W. FreesRegression Modeling with Actuarial and Financial Applications84,99 €
- Jorge M. UribeQuantile Regression for Cross-Sectional and Time Series Data48,99 €
- Handbook of Quantile Regression233,99 €
- Joshua D. AngristMostly Harmless Econometrics43,99 €
- Hans-Martin KrolzigMarkov-Switching Vector Autoregressions75,99 €
- Economic Applications of Quantile Regression74,99 €
- Advances in Social Science Research Using R117,99 €
-
-
-
Quantile regression is gradually emerging as a unified statistical methodology for estimating models of conditional quantile functions. By complementing the exclusive focus of classical least squares regression on the conditional mean, quantile regression offers a systematic strategy for examining how covariates influence the location, scale and shape of the entire response distribution. This monograph is the first comprehensive treatment of the subject, encompassing models that are linear and nonlinear, parametric and nonparametric. The author has devoted more than 25 years of research to this topic. The methods in the analysis are illustrated with a variety of applications from economics, biology, ecology and finance. The treatment will find its core audiences in econometrics, statistics, and applied mathematics in addition to the disciplines cited above.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Econometric Society Monographs 38
- Verlag: Cambridge University Press
- Seitenzahl: 366
- Erscheinungstermin: 30. Juni 2010
- Englisch
- Abmessung: 229mm x 152mm x 22mm
- Gewicht: 492g
- ISBN-13: 9780521608275
- ISBN-10: 0521608279
- Artikelnr.: 20886862
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Econometric Society Monographs 38
- Verlag: Cambridge University Press
- Seitenzahl: 366
- Erscheinungstermin: 30. Juni 2010
- Englisch
- Abmessung: 229mm x 152mm x 22mm
- Gewicht: 492g
- ISBN-13: 9780521608275
- ISBN-10: 0521608279
- Artikelnr.: 20886862
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Roger Koenker is McKinley Professor of Economics and Professor of Statistics at the University of Illinois at Urbana-Champaign. From 1976 to 1983 he was a member of the technical staff at Bell Laboratories. He has held visiting positions at The University of Pennsylvania, Charles University, Prague, Nuffield College, Oxford, University College London and Australian National University. He is a Fellow of the Econometric Society.
Part I. Introduction: 1. Means and ends; 2. The first regression: an historical prelude; 3. Quantiles, ranks, and optimization; 4. Preview of quantile regression; 5. Three examples; 6. Conclusion; Part II. Fundamentals of Quantile Regression: 7. Quantile treatment effects; 8. How does quantile regression work?; 9. Robustness; 10. Interpreting quantile regression models; 11. Caution: quantile crossing; 12. A random coefficient interpretation; 13. Inequality measures and their decomposition; 14. Expectiles and other variations; 15. Interpreting misspecified quantile regressions; 16. Problems; Part III. Inference for Quantile Regression: 17. The finite sample distribution of regression quantiles; 18. A heuristic introduction to quantile regression asymptotics; 19. Wald tests; 20. Estimation of asymptotic covariance matrices; 21. Rank based Inference for quantile regression; 22. Quantile likelihood ratio tests; 23. Inference on the quantile regression process; 24. Tests of the location/acale hypothesis; 25. Resampling methods and the bootstrap; 26. Monte-Carlo comparison of methods; 27. Problems; Part IV. Asymptotic Theory of Quantile Regression: 28. Consistency; 29. Rates of convergence; 30. Bahadur representation; 31. Nonlinear quantile regression; 32. The quantile regression rankscore process; 33. Quantile regression asymptotics under dependent conditions; 34. Extremal quantile regression; 35. The method of quantiles; 36. Model selection, penalties, and large-p asymptotics; 37. Asymptotics for inference; 38. Resampling schemes and the bootstrap; 39. Asymptotics for the quantile regression process; 40. Problems; Part V. L-Statistics and Weighted Quantile Regression: 41. L-Statistics for the linear model; 42. Kernel smoothing for quantile regression; 43. Weighted quantile regression; 44 Quantile regression for location-scale models; 45. Weighted sums of p-functions; 46. Problems; Part VI. Computational Aspects of Quantile Regression: 47. Introduction to linear programming; 48. Simplex methods for quantile regression; 49. Parametric programming for quantile regression; 50 Interior point methods for canonical LPs; 51. Preprocessing for quantile regression; 52. Nonlinear quantile regression; 53. Inequality constraints; 54. Weighted sums of p-functions; 55. Sparsity; 56. Conclusion; 57. Problems; Part VII. Nonparametric Quantile Regression: 58. Locally polynomial quantile regression; 59. Penalty methods for univariate smoothing; 60. Penalty methods for bivariate Smoothing; 61. Additive models and the Role of sparsity; Part VIII. Twilight Zone of Quantile Regression: 62. Quantile regression for survival data; 63. Discrete Response models; 64. Quantile autoregression; 65. Copula functions and nonlinear quantile regression; 66. High breakdown alternatives to quantile regression; 67. Multivariate quantiles; 68. Penalty methods for longitudinal data; 69. Causal effects and structural models; 70. Choquet utility, risk and pessimistic portfolios; Part IX. Conclusion: A. Quantile regression in R: a vignette; A.1. Introduction; A.2. What is a vignette?; A.3. Getting started; A.4. Object orientation; A.5. Formal Inference; A.6. More on testing; A.7. Inference on the quantile regression process; A.8. Nonlinear quantile regression; A.9. Nonparametric quantile regression; A.10. Conclusion; B. Asymptotic critical values.
Part I. Introduction: 1. Means and ends
2. The first regression: an historical prelude
3. Quantiles, ranks, and optimization
4. Preview of quantile regression
5. Three examples
6. Conclusion
Part II. Fundamentals of Quantile Regression: 7. Quantile treatment effects
8. How does quantile regression work?
9. Robustness
10. Interpreting quantile regression models
11. Caution: quantile crossing
12. A random coefficient interpretation
13. Inequality measures and their decomposition
14. Expectiles and other variations
15. Interpreting misspecified quantile regressions
16. Problems
Part III. Inference for Quantile Regression: 17. The finite sample distribution of regression quantiles
18. A heuristic introduction to quantile regression asymptotics
19. Wald tests
20. Estimation of asymptotic covariance matrices
21. Rank based Inference for quantile regression
22. Quantile likelihood ratio tests
23. Inference on the quantile regression process
24. Tests of the location/acale hypothesis
25. Resampling methods and the bootstrap
26. Monte-Carlo comparison of methods
27. Problems
Part IV. Asymptotic Theory of Quantile Regression: 28. Consistency
29. Rates of convergence
30. Bahadur representation
31. Nonlinear quantile regression
32. The quantile regression rankscore process
33. Quantile regression asymptotics under dependent conditions
34. Extremal quantile regression
35. The method of quantiles
36. Model selection, penalties, and large-p asymptotics
37. Asymptotics for inference
38. Resampling schemes and the bootstrap
39. Asymptotics for the quantile regression process
40. Problems
Part V. L-Statistics and Weighted Quantile Regression: 41. L-Statistics for the linear model
42. Kernel smoothing for quantile regression
43. Weighted quantile regression
44 Quantile regression for location-scale models
45. Weighted sums of p-functions
46. Problems
Part VI. Computational Aspects of Quantile Regression: 47. Introduction to linear programming
48. Simplex methods for quantile regression
49. Parametric programming for quantile regression
50 Interior point methods for canonical LPs
51. Preprocessing for quantile regression
52. Nonlinear quantile regression
53. Inequality constraints
54. Weighted sums of p-functions
55. Sparsity
56. Conclusion
57. Problems
Part VII. Nonparametric Quantile Regression: 58. Locally polynomial quantile regression
59. Penalty methods for univariate smoothing
60. Penalty methods for bivariate Smoothing
61. Additive models and the Role of sparsity
Part VIII. Twilight Zone of Quantile Regression: 62. Quantile regression for survival data
63. Discrete Response models
64. Quantile autoregression
65. Copula functions and nonlinear quantile regression
66. High breakdown alternatives to quantile regression
67. Multivariate quantiles
68. Penalty methods for longitudinal data
69. Causal effects and structural models
70. Choquet utility, risk and pessimistic portfolios
Part IX. Conclusion: A. Quantile regression in R: a vignette
A.1. Introduction
A.2. What is a vignette?
A.3. Getting started
A.4. Object orientation
A.5. Formal Inference
A.6. More on testing
A.7. Inference on the quantile regression process
A.8. Nonlinear quantile regression
A.9. Nonparametric quantile regression
A.10. Conclusion
B. Asymptotic critical values.
2. The first regression: an historical prelude
3. Quantiles, ranks, and optimization
4. Preview of quantile regression
5. Three examples
6. Conclusion
Part II. Fundamentals of Quantile Regression: 7. Quantile treatment effects
8. How does quantile regression work?
9. Robustness
10. Interpreting quantile regression models
11. Caution: quantile crossing
12. A random coefficient interpretation
13. Inequality measures and their decomposition
14. Expectiles and other variations
15. Interpreting misspecified quantile regressions
16. Problems
Part III. Inference for Quantile Regression: 17. The finite sample distribution of regression quantiles
18. A heuristic introduction to quantile regression asymptotics
19. Wald tests
20. Estimation of asymptotic covariance matrices
21. Rank based Inference for quantile regression
22. Quantile likelihood ratio tests
23. Inference on the quantile regression process
24. Tests of the location/acale hypothesis
25. Resampling methods and the bootstrap
26. Monte-Carlo comparison of methods
27. Problems
Part IV. Asymptotic Theory of Quantile Regression: 28. Consistency
29. Rates of convergence
30. Bahadur representation
31. Nonlinear quantile regression
32. The quantile regression rankscore process
33. Quantile regression asymptotics under dependent conditions
34. Extremal quantile regression
35. The method of quantiles
36. Model selection, penalties, and large-p asymptotics
37. Asymptotics for inference
38. Resampling schemes and the bootstrap
39. Asymptotics for the quantile regression process
40. Problems
Part V. L-Statistics and Weighted Quantile Regression: 41. L-Statistics for the linear model
42. Kernel smoothing for quantile regression
43. Weighted quantile regression
44 Quantile regression for location-scale models
45. Weighted sums of p-functions
46. Problems
Part VI. Computational Aspects of Quantile Regression: 47. Introduction to linear programming
48. Simplex methods for quantile regression
49. Parametric programming for quantile regression
50 Interior point methods for canonical LPs
51. Preprocessing for quantile regression
52. Nonlinear quantile regression
53. Inequality constraints
54. Weighted sums of p-functions
55. Sparsity
56. Conclusion
57. Problems
Part VII. Nonparametric Quantile Regression: 58. Locally polynomial quantile regression
59. Penalty methods for univariate smoothing
60. Penalty methods for bivariate Smoothing
61. Additive models and the Role of sparsity
Part VIII. Twilight Zone of Quantile Regression: 62. Quantile regression for survival data
63. Discrete Response models
64. Quantile autoregression
65. Copula functions and nonlinear quantile regression
66. High breakdown alternatives to quantile regression
67. Multivariate quantiles
68. Penalty methods for longitudinal data
69. Causal effects and structural models
70. Choquet utility, risk and pessimistic portfolios
Part IX. Conclusion: A. Quantile regression in R: a vignette
A.1. Introduction
A.2. What is a vignette?
A.3. Getting started
A.4. Object orientation
A.5. Formal Inference
A.6. More on testing
A.7. Inference on the quantile regression process
A.8. Nonlinear quantile regression
A.9. Nonparametric quantile regression
A.10. Conclusion
B. Asymptotic critical values.
Part I. Introduction: 1. Means and ends; 2. The first regression: an historical prelude; 3. Quantiles, ranks, and optimization; 4. Preview of quantile regression; 5. Three examples; 6. Conclusion; Part II. Fundamentals of Quantile Regression: 7. Quantile treatment effects; 8. How does quantile regression work?; 9. Robustness; 10. Interpreting quantile regression models; 11. Caution: quantile crossing; 12. A random coefficient interpretation; 13. Inequality measures and their decomposition; 14. Expectiles and other variations; 15. Interpreting misspecified quantile regressions; 16. Problems; Part III. Inference for Quantile Regression: 17. The finite sample distribution of regression quantiles; 18. A heuristic introduction to quantile regression asymptotics; 19. Wald tests; 20. Estimation of asymptotic covariance matrices; 21. Rank based Inference for quantile regression; 22. Quantile likelihood ratio tests; 23. Inference on the quantile regression process; 24. Tests of the location/acale hypothesis; 25. Resampling methods and the bootstrap; 26. Monte-Carlo comparison of methods; 27. Problems; Part IV. Asymptotic Theory of Quantile Regression: 28. Consistency; 29. Rates of convergence; 30. Bahadur representation; 31. Nonlinear quantile regression; 32. The quantile regression rankscore process; 33. Quantile regression asymptotics under dependent conditions; 34. Extremal quantile regression; 35. The method of quantiles; 36. Model selection, penalties, and large-p asymptotics; 37. Asymptotics for inference; 38. Resampling schemes and the bootstrap; 39. Asymptotics for the quantile regression process; 40. Problems; Part V. L-Statistics and Weighted Quantile Regression: 41. L-Statistics for the linear model; 42. Kernel smoothing for quantile regression; 43. Weighted quantile regression; 44 Quantile regression for location-scale models; 45. Weighted sums of p-functions; 46. Problems; Part VI. Computational Aspects of Quantile Regression: 47. Introduction to linear programming; 48. Simplex methods for quantile regression; 49. Parametric programming for quantile regression; 50 Interior point methods for canonical LPs; 51. Preprocessing for quantile regression; 52. Nonlinear quantile regression; 53. Inequality constraints; 54. Weighted sums of p-functions; 55. Sparsity; 56. Conclusion; 57. Problems; Part VII. Nonparametric Quantile Regression: 58. Locally polynomial quantile regression; 59. Penalty methods for univariate smoothing; 60. Penalty methods for bivariate Smoothing; 61. Additive models and the Role of sparsity; Part VIII. Twilight Zone of Quantile Regression: 62. Quantile regression for survival data; 63. Discrete Response models; 64. Quantile autoregression; 65. Copula functions and nonlinear quantile regression; 66. High breakdown alternatives to quantile regression; 67. Multivariate quantiles; 68. Penalty methods for longitudinal data; 69. Causal effects and structural models; 70. Choquet utility, risk and pessimistic portfolios; Part IX. Conclusion: A. Quantile regression in R: a vignette; A.1. Introduction; A.2. What is a vignette?; A.3. Getting started; A.4. Object orientation; A.5. Formal Inference; A.6. More on testing; A.7. Inference on the quantile regression process; A.8. Nonlinear quantile regression; A.9. Nonparametric quantile regression; A.10. Conclusion; B. Asymptotic critical values.
Part I. Introduction: 1. Means and ends
2. The first regression: an historical prelude
3. Quantiles, ranks, and optimization
4. Preview of quantile regression
5. Three examples
6. Conclusion
Part II. Fundamentals of Quantile Regression: 7. Quantile treatment effects
8. How does quantile regression work?
9. Robustness
10. Interpreting quantile regression models
11. Caution: quantile crossing
12. A random coefficient interpretation
13. Inequality measures and their decomposition
14. Expectiles and other variations
15. Interpreting misspecified quantile regressions
16. Problems
Part III. Inference for Quantile Regression: 17. The finite sample distribution of regression quantiles
18. A heuristic introduction to quantile regression asymptotics
19. Wald tests
20. Estimation of asymptotic covariance matrices
21. Rank based Inference for quantile regression
22. Quantile likelihood ratio tests
23. Inference on the quantile regression process
24. Tests of the location/acale hypothesis
25. Resampling methods and the bootstrap
26. Monte-Carlo comparison of methods
27. Problems
Part IV. Asymptotic Theory of Quantile Regression: 28. Consistency
29. Rates of convergence
30. Bahadur representation
31. Nonlinear quantile regression
32. The quantile regression rankscore process
33. Quantile regression asymptotics under dependent conditions
34. Extremal quantile regression
35. The method of quantiles
36. Model selection, penalties, and large-p asymptotics
37. Asymptotics for inference
38. Resampling schemes and the bootstrap
39. Asymptotics for the quantile regression process
40. Problems
Part V. L-Statistics and Weighted Quantile Regression: 41. L-Statistics for the linear model
42. Kernel smoothing for quantile regression
43. Weighted quantile regression
44 Quantile regression for location-scale models
45. Weighted sums of p-functions
46. Problems
Part VI. Computational Aspects of Quantile Regression: 47. Introduction to linear programming
48. Simplex methods for quantile regression
49. Parametric programming for quantile regression
50 Interior point methods for canonical LPs
51. Preprocessing for quantile regression
52. Nonlinear quantile regression
53. Inequality constraints
54. Weighted sums of p-functions
55. Sparsity
56. Conclusion
57. Problems
Part VII. Nonparametric Quantile Regression: 58. Locally polynomial quantile regression
59. Penalty methods for univariate smoothing
60. Penalty methods for bivariate Smoothing
61. Additive models and the Role of sparsity
Part VIII. Twilight Zone of Quantile Regression: 62. Quantile regression for survival data
63. Discrete Response models
64. Quantile autoregression
65. Copula functions and nonlinear quantile regression
66. High breakdown alternatives to quantile regression
67. Multivariate quantiles
68. Penalty methods for longitudinal data
69. Causal effects and structural models
70. Choquet utility, risk and pessimistic portfolios
Part IX. Conclusion: A. Quantile regression in R: a vignette
A.1. Introduction
A.2. What is a vignette?
A.3. Getting started
A.4. Object orientation
A.5. Formal Inference
A.6. More on testing
A.7. Inference on the quantile regression process
A.8. Nonlinear quantile regression
A.9. Nonparametric quantile regression
A.10. Conclusion
B. Asymptotic critical values.
2. The first regression: an historical prelude
3. Quantiles, ranks, and optimization
4. Preview of quantile regression
5. Three examples
6. Conclusion
Part II. Fundamentals of Quantile Regression: 7. Quantile treatment effects
8. How does quantile regression work?
9. Robustness
10. Interpreting quantile regression models
11. Caution: quantile crossing
12. A random coefficient interpretation
13. Inequality measures and their decomposition
14. Expectiles and other variations
15. Interpreting misspecified quantile regressions
16. Problems
Part III. Inference for Quantile Regression: 17. The finite sample distribution of regression quantiles
18. A heuristic introduction to quantile regression asymptotics
19. Wald tests
20. Estimation of asymptotic covariance matrices
21. Rank based Inference for quantile regression
22. Quantile likelihood ratio tests
23. Inference on the quantile regression process
24. Tests of the location/acale hypothesis
25. Resampling methods and the bootstrap
26. Monte-Carlo comparison of methods
27. Problems
Part IV. Asymptotic Theory of Quantile Regression: 28. Consistency
29. Rates of convergence
30. Bahadur representation
31. Nonlinear quantile regression
32. The quantile regression rankscore process
33. Quantile regression asymptotics under dependent conditions
34. Extremal quantile regression
35. The method of quantiles
36. Model selection, penalties, and large-p asymptotics
37. Asymptotics for inference
38. Resampling schemes and the bootstrap
39. Asymptotics for the quantile regression process
40. Problems
Part V. L-Statistics and Weighted Quantile Regression: 41. L-Statistics for the linear model
42. Kernel smoothing for quantile regression
43. Weighted quantile regression
44 Quantile regression for location-scale models
45. Weighted sums of p-functions
46. Problems
Part VI. Computational Aspects of Quantile Regression: 47. Introduction to linear programming
48. Simplex methods for quantile regression
49. Parametric programming for quantile regression
50 Interior point methods for canonical LPs
51. Preprocessing for quantile regression
52. Nonlinear quantile regression
53. Inequality constraints
54. Weighted sums of p-functions
55. Sparsity
56. Conclusion
57. Problems
Part VII. Nonparametric Quantile Regression: 58. Locally polynomial quantile regression
59. Penalty methods for univariate smoothing
60. Penalty methods for bivariate Smoothing
61. Additive models and the Role of sparsity
Part VIII. Twilight Zone of Quantile Regression: 62. Quantile regression for survival data
63. Discrete Response models
64. Quantile autoregression
65. Copula functions and nonlinear quantile regression
66. High breakdown alternatives to quantile regression
67. Multivariate quantiles
68. Penalty methods for longitudinal data
69. Causal effects and structural models
70. Choquet utility, risk and pessimistic portfolios
Part IX. Conclusion: A. Quantile regression in R: a vignette
A.1. Introduction
A.2. What is a vignette?
A.3. Getting started
A.4. Object orientation
A.5. Formal Inference
A.6. More on testing
A.7. Inference on the quantile regression process
A.8. Nonlinear quantile regression
A.9. Nonparametric quantile regression
A.10. Conclusion
B. Asymptotic critical values.
'... well written and easy to read, with useful illustrations of important aspects of quantile regression. It is obvious that the author knows the subject inside out, giving an up-to-date, exhaustive account of the subject. ... The book is a valuable contribution to the statistical literature, and a must have for every statistician or econometrician interested in quantile regression methods.' Journal of the Royal Statistical Society