- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Quantum field theory provides the theoretical backbone to most modern physics. This book is designed to bring quantum field theory to a wider audience of physicists. It is packed with worked examples, witty diagrams, and applications intended to introduce a new audience to this revolutionary theory.
Andere Kunden interessierten sich auch für
- Andrew Zangwill (Georgia Institute of Technology)Modern Electrodynamics72,99 €
- Paul HorowitzThe Art of Electronics94,99 €
- Betty EdwardsDrawing on the Right Side of the Brain20,99 €
- Elliot WilliamsAVR Programming40,99 €
- Daniel Fleisch (Ohio Wittenberg University)A Student's Guide to Waves32,99 €
- Charles PlattMake: More Electronics32,99 €
- Daniel Fleisch (Ohio Wittenberg University)A Student's Guide to Maxwell's Equations34,99 €
-
-
-
-
-
-
-
-
-
-
-
Quantum field theory provides the theoretical backbone to most modern physics. This book is designed to bring quantum field theory to a wider audience of physicists. It is packed with worked examples, witty diagrams, and applications intended to introduce a new audience to this revolutionary theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press
- Seitenzahl: 504
- Erscheinungstermin: 1. Juni 2014
- Englisch
- Abmessung: 246mm x 189mm x 28mm
- Gewicht: 972g
- ISBN-13: 9780199699339
- ISBN-10: 019969933X
- Artikelnr.: 40028667
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Oxford University Press
- Seitenzahl: 504
- Erscheinungstermin: 1. Juni 2014
- Englisch
- Abmessung: 246mm x 189mm x 28mm
- Gewicht: 972g
- ISBN-13: 9780199699339
- ISBN-10: 019969933X
- Artikelnr.: 40028667
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Tom Lancaster was a Research Fellow in Physics at the University of Oxford, before becoming a Lecturer at the University of Durham in 2012. Stephen J. Blundell is a Professor of Physics at the University of Oxford and a Fellow of Mansfield College, Oxford.
* Overture
* I: The Universe as a set of harmonic oscillators
* 1: Lagrangians
* 2: Simple harmonic oscillators
* 3: Occupation number representation
* 4: Making second quantization work
* II: Writing down Lagrangians
* 5: Continuous systems
* 6: A first stab at relativistic quantum mechanics
* 7: Examples of Lagrangians, or how to write down a theory
* III: The need for quantum fields
* 8: The passage of time
* 9: Quantum mechanical transformations
* 10: Symmetry
* 11: Canonical quantization of fields
* 12: Examples of canonical quantization
* 13: Fields with many components and massive electromagnetism
* 14: Gauge fields and gauge theory
* 15: Discrete transformations
* IV: Propagators and perturbations
* 16: Ways of doing quantum mechanics: propagators and Green's
functions
* 17: Propagators and Fields
* 18: The S-matrix
* 19: Expanding the S-matrix: Feynman diagrams
* 20: Scattering theory
* V: Interlude: wisdom from statistical physics
* 21: Statistical physics: a crash course
* 22: The generating functional for fields
* VI: Path Integrals
* 23: Path Integrals: I said to him, "You're crazy"
* 24: Field Integrals
* 25: Statistical field theory
* 26: Broken symmetry
* 27: Coherent states
* 28: Grassmann numbers: coherent states and the path integral for
fermions
* VII: Topological ideas
* 29: Topological objects
* 30: Topological field theory
* VIII: Renormalization: taming the infinite
* 31: Renormalization, quasiparticles and the Fermi surface
* 32: Renormalization: the problem and its solution
* 33: Renormalization in action: propagators and Feynman diagrams
* 34: The renormalization group
* 35: Ferromagnetism: a renormalization group tutorial
* IX: Putting a spin on QFT
* 36: The Dirac equation
* 37: How to transform a spinor
* 38: The quantum Dirac field
* 39: A rough guide to quantum electrodynamics
* 40: QED scattering: three famous cross sections
* 41: The renormalization of QED and two great results
* X: Some applications from the world of condensed matter
* 42: Superfluids
* 43: The many-body problem and the metal
* 44: Superconductors
* 45: The fractional quantum Hall fluid
* XI: Some applications from the world of particle physics
* 46: Non-abelian gauge theory
* 47: The Weinberg-Salam model
* 48: Majorana fermions
* 49: Magnetic monopoles
* 50: Instantons, tunnelling and the end of the world
* Appendix A: Further reading
* Appendix B: Useful complex analysis
* I: The Universe as a set of harmonic oscillators
* 1: Lagrangians
* 2: Simple harmonic oscillators
* 3: Occupation number representation
* 4: Making second quantization work
* II: Writing down Lagrangians
* 5: Continuous systems
* 6: A first stab at relativistic quantum mechanics
* 7: Examples of Lagrangians, or how to write down a theory
* III: The need for quantum fields
* 8: The passage of time
* 9: Quantum mechanical transformations
* 10: Symmetry
* 11: Canonical quantization of fields
* 12: Examples of canonical quantization
* 13: Fields with many components and massive electromagnetism
* 14: Gauge fields and gauge theory
* 15: Discrete transformations
* IV: Propagators and perturbations
* 16: Ways of doing quantum mechanics: propagators and Green's
functions
* 17: Propagators and Fields
* 18: The S-matrix
* 19: Expanding the S-matrix: Feynman diagrams
* 20: Scattering theory
* V: Interlude: wisdom from statistical physics
* 21: Statistical physics: a crash course
* 22: The generating functional for fields
* VI: Path Integrals
* 23: Path Integrals: I said to him, "You're crazy"
* 24: Field Integrals
* 25: Statistical field theory
* 26: Broken symmetry
* 27: Coherent states
* 28: Grassmann numbers: coherent states and the path integral for
fermions
* VII: Topological ideas
* 29: Topological objects
* 30: Topological field theory
* VIII: Renormalization: taming the infinite
* 31: Renormalization, quasiparticles and the Fermi surface
* 32: Renormalization: the problem and its solution
* 33: Renormalization in action: propagators and Feynman diagrams
* 34: The renormalization group
* 35: Ferromagnetism: a renormalization group tutorial
* IX: Putting a spin on QFT
* 36: The Dirac equation
* 37: How to transform a spinor
* 38: The quantum Dirac field
* 39: A rough guide to quantum electrodynamics
* 40: QED scattering: three famous cross sections
* 41: The renormalization of QED and two great results
* X: Some applications from the world of condensed matter
* 42: Superfluids
* 43: The many-body problem and the metal
* 44: Superconductors
* 45: The fractional quantum Hall fluid
* XI: Some applications from the world of particle physics
* 46: Non-abelian gauge theory
* 47: The Weinberg-Salam model
* 48: Majorana fermions
* 49: Magnetic monopoles
* 50: Instantons, tunnelling and the end of the world
* Appendix A: Further reading
* Appendix B: Useful complex analysis
* Overture
* I: The Universe as a set of harmonic oscillators
* 1: Lagrangians
* 2: Simple harmonic oscillators
* 3: Occupation number representation
* 4: Making second quantization work
* II: Writing down Lagrangians
* 5: Continuous systems
* 6: A first stab at relativistic quantum mechanics
* 7: Examples of Lagrangians, or how to write down a theory
* III: The need for quantum fields
* 8: The passage of time
* 9: Quantum mechanical transformations
* 10: Symmetry
* 11: Canonical quantization of fields
* 12: Examples of canonical quantization
* 13: Fields with many components and massive electromagnetism
* 14: Gauge fields and gauge theory
* 15: Discrete transformations
* IV: Propagators and perturbations
* 16: Ways of doing quantum mechanics: propagators and Green's
functions
* 17: Propagators and Fields
* 18: The S-matrix
* 19: Expanding the S-matrix: Feynman diagrams
* 20: Scattering theory
* V: Interlude: wisdom from statistical physics
* 21: Statistical physics: a crash course
* 22: The generating functional for fields
* VI: Path Integrals
* 23: Path Integrals: I said to him, "You're crazy"
* 24: Field Integrals
* 25: Statistical field theory
* 26: Broken symmetry
* 27: Coherent states
* 28: Grassmann numbers: coherent states and the path integral for
fermions
* VII: Topological ideas
* 29: Topological objects
* 30: Topological field theory
* VIII: Renormalization: taming the infinite
* 31: Renormalization, quasiparticles and the Fermi surface
* 32: Renormalization: the problem and its solution
* 33: Renormalization in action: propagators and Feynman diagrams
* 34: The renormalization group
* 35: Ferromagnetism: a renormalization group tutorial
* IX: Putting a spin on QFT
* 36: The Dirac equation
* 37: How to transform a spinor
* 38: The quantum Dirac field
* 39: A rough guide to quantum electrodynamics
* 40: QED scattering: three famous cross sections
* 41: The renormalization of QED and two great results
* X: Some applications from the world of condensed matter
* 42: Superfluids
* 43: The many-body problem and the metal
* 44: Superconductors
* 45: The fractional quantum Hall fluid
* XI: Some applications from the world of particle physics
* 46: Non-abelian gauge theory
* 47: The Weinberg-Salam model
* 48: Majorana fermions
* 49: Magnetic monopoles
* 50: Instantons, tunnelling and the end of the world
* Appendix A: Further reading
* Appendix B: Useful complex analysis
* I: The Universe as a set of harmonic oscillators
* 1: Lagrangians
* 2: Simple harmonic oscillators
* 3: Occupation number representation
* 4: Making second quantization work
* II: Writing down Lagrangians
* 5: Continuous systems
* 6: A first stab at relativistic quantum mechanics
* 7: Examples of Lagrangians, or how to write down a theory
* III: The need for quantum fields
* 8: The passage of time
* 9: Quantum mechanical transformations
* 10: Symmetry
* 11: Canonical quantization of fields
* 12: Examples of canonical quantization
* 13: Fields with many components and massive electromagnetism
* 14: Gauge fields and gauge theory
* 15: Discrete transformations
* IV: Propagators and perturbations
* 16: Ways of doing quantum mechanics: propagators and Green's
functions
* 17: Propagators and Fields
* 18: The S-matrix
* 19: Expanding the S-matrix: Feynman diagrams
* 20: Scattering theory
* V: Interlude: wisdom from statistical physics
* 21: Statistical physics: a crash course
* 22: The generating functional for fields
* VI: Path Integrals
* 23: Path Integrals: I said to him, "You're crazy"
* 24: Field Integrals
* 25: Statistical field theory
* 26: Broken symmetry
* 27: Coherent states
* 28: Grassmann numbers: coherent states and the path integral for
fermions
* VII: Topological ideas
* 29: Topological objects
* 30: Topological field theory
* VIII: Renormalization: taming the infinite
* 31: Renormalization, quasiparticles and the Fermi surface
* 32: Renormalization: the problem and its solution
* 33: Renormalization in action: propagators and Feynman diagrams
* 34: The renormalization group
* 35: Ferromagnetism: a renormalization group tutorial
* IX: Putting a spin on QFT
* 36: The Dirac equation
* 37: How to transform a spinor
* 38: The quantum Dirac field
* 39: A rough guide to quantum electrodynamics
* 40: QED scattering: three famous cross sections
* 41: The renormalization of QED and two great results
* X: Some applications from the world of condensed matter
* 42: Superfluids
* 43: The many-body problem and the metal
* 44: Superconductors
* 45: The fractional quantum Hall fluid
* XI: Some applications from the world of particle physics
* 46: Non-abelian gauge theory
* 47: The Weinberg-Salam model
* 48: Majorana fermions
* 49: Magnetic monopoles
* 50: Instantons, tunnelling and the end of the world
* Appendix A: Further reading
* Appendix B: Useful complex analysis