- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides an accessible treatment of non-relativistic and relativistic quantum mechanics.
Andere Kunden interessierten sich auch für
- Richard FitzpatrickNewtonian Dynamics70,99 €
- Michael AntoshIntroductory Physics168,99 €
- Bijan BagchiAdvanced Classical Mechanics202,99 €
- Bicky A MarquezInteractions77,99 €
- Taejoon KouhElectrodynamics Tutorials with Python Simulations181,99 €
- Roberto A. TenenbaumFundamentals of Applied Dynamics126,99 €
- Roberto A. TenenbaumFundamentals of Applied Dynamics69,99 €
-
-
-
This book provides an accessible treatment of non-relativistic and relativistic quantum mechanics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: CRC Press
- Seitenzahl: 554
- Erscheinungstermin: 26. August 2024
- Englisch
- Abmessung: 254mm x 178mm x 30mm
- Gewicht: 1029g
- ISBN-13: 9781032225593
- ISBN-10: 1032225599
- Artikelnr.: 71237728
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: CRC Press
- Seitenzahl: 554
- Erscheinungstermin: 26. August 2024
- Englisch
- Abmessung: 254mm x 178mm x 30mm
- Gewicht: 1029g
- ISBN-13: 9781032225593
- ISBN-10: 1032225599
- Artikelnr.: 71237728
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Lukong Cornelius Fai is professor of theoretical physics at the Department of Physics, Faculty of Sciences, University of Dschang. He is Head of Condensed Matter and Nanomaterials as well as Mesoscopic and Multilayer Structures Laboratory. He was formerly a senior associate at the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy. He holds a Masters of Science in Physics and Mathematics (June 1991) as well as a Doctor of Science in Physics and Mathematics (February 1997) from Moldova State University. He is an author of over a hundred and seventy scientific publications and five textbooks
Chapter 1. Quantum Mechanics Basic Concepts.
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 1. Quantum Mechanics Basic Concepts.
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 1. Quantum Mechanics Basic Concepts.
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 1. Quantum Mechanics Basic Concepts.
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials
Chapter 2. Schrödinger Equation.
Chapter 3. Momentum Operator. Chapter 4. Total Angular Momentum.
Chapter 5. One-Dimensional Motion General Principles.
Chapter 6. Schrödinger Equation.
Chapter 7. Representation Theory.
Chapter 8. Quantum Mechanics Approximate Methods.
Chapter 9. Many-Particle System.
Chapter 10. Approximate Method for the Helium Atom.
Chapter 11. Approximate Method for the Hydrogen Molecule.
Chapter 12. Scattering Theory.
Chapter 13. Polaron Theory.
Chapter 14. Case of an Electron.
Chapter 15. Klein-Gordon Equation.
Chapter 16. Dirac Equation.
Chapter 17. Probability and Current Densities.
Chapter 18. Electron Spin in the Dirac Theory.
Chapter 19. Free Electron State with Defined Momentum-Positronium Motion.
Chapter 20. Dirac Equation.
Chapter 21. Motion in a Magnetic Field.
Chapter 22. Gamma Functions.
Chapter 23. Confluent Hypergeometric Functions.
Chapter 24. Cylindrical Functions.
Chapter 25. Orthogonal Polynomials