Quantum Modeling of Complex Molecular Systems
Herausgegeben:Rivail, Jean-Louis; Ruiz-Lopez, Manuel; Assfeld, Xavier
Quantum Modeling of Complex Molecular Systems
Herausgegeben:Rivail, Jean-Louis; Ruiz-Lopez, Manuel; Assfeld, Xavier
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems.
Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling…mehr
Andere Kunden interessierten sich auch für
- Molecular Science of Fluctuations Toward Biological Functions74,99 €
- Heinz FalkThe Chemistry of Linear Oligopyrroles and Bile Pigments85,99 €
- Masoud RahmanProtein-Nanoparticle Interactions74,99 €
- microRNA: Medical Evidence110,99 €
- Molecular Technologies for Detection of Chemical and Biological Agents110,99 €
- Molecular Technologies for Detection of Chemical and Biological Agents110,99 €
- Oriol GüellA Network-Based Approach to Cell Metabolism74,99 €
-
-
-
This multi-author contributed volume includes methodological advances and original applications to actual chemical or biochemical phenomena which were not possible before the increased sophistication of modern computers. The chapters contain detailed reviews of the developments of various computational techniques, used to study complex molecular systems such as molecular liquids and solutions (particularly aqueous solutions), liquid-gas, solid-gas interphase and biomacromolecular systems.
Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.
Quantum modeling of complex molecular systems is a useful resource for graduate students and fledgling researchers and is also an excellent companion for research professionals engaged in computational chemistry, material science, nanotechnology, physics, drug design, and molecular biochemistry.
Produktdetails
- Produktdetails
- Challenges and Advances in Computational Chemistry and Physics 21
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-319-21625-6
- 1st ed. 2015
- Seitenzahl: 536
- Erscheinungstermin: 28. Oktober 2015
- Englisch
- Abmessung: 241mm x 160mm x 33mm
- Gewicht: 1004g
- ISBN-13: 9783319216256
- ISBN-10: 3319216252
- Artikelnr.: 43001460
- Challenges and Advances in Computational Chemistry and Physics 21
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-319-21625-6
- 1st ed. 2015
- Seitenzahl: 536
- Erscheinungstermin: 28. Oktober 2015
- Englisch
- Abmessung: 241mm x 160mm x 33mm
- Gewicht: 1004g
- ISBN-13: 9783319216256
- ISBN-10: 3319216252
- Artikelnr.: 43001460
Present status: Emeritus Professor of Theoretical Chemistry, University of Lorraine (Nancy Campus). Research field: Theoretical modeling of complex molecular systems. Publications (more than 200).
Adressing the Issues of Non-Additivity in the Development of Quantum Chemistry-Grounded Polarizable Molecular Mechanics.- Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptative QM/MM.- Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics.- Probing Proton Transfer Reactions in Molecular Dynamics- A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models.- Accelerating QM/MM Calculations by Using the Mean Field Approximation.- Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions.- Structure and Electronic Properties of Liquids and Complex Molecular Systems in Solution: Coupling Many-Body Energy Decomposition Schemes to Born-Oppenheimer Molecular Dynamics.- Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution.- Towards an Accurate Model for Halogens in Aqueous Solutions.- Theoretical Studies of the Solvation of abundant Toxic Mercury Species in Aqueous Media.- Advances in QM/MM Molecular Dynamics Simulations of Chemical Processes at Aqueous Interfaces.- QM/MM Approaches for the Modeling of Photoinduced Processes in Biological Systems.- The Non Empirical Local Self Consistent Field Method. Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems.- Computational Study of the Initial Step in the Reaction Mechanism of Dehaloperoxidase A. Co
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue.- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems.
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue.- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems.
Adressing the Issues of Non-Additivity in the Development of Quantum Chemistry-Grounded Polarizable Molecular Mechanics.- Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptative QM/MM.- Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics.- Probing Proton Transfer Reactions in Molecular Dynamics- A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models.- Accelerating QM/MM Calculations by Using the Mean Field Approximation.- Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions.- Structure and Electronic Properties of Liquids and Complex Molecular Systems in Solution: Coupling Many-Body Energy Decomposition Schemes to Born-Oppenheimer Molecular Dynamics.- Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution.- Towards an Accurate Model for Halogens in Aqueous Solutions.- Theoretical Studies of the Solvation of abundant Toxic Mercury Species in Aqueous Media.- Advances in QM/MM Molecular Dynamics Simulations of Chemical Processes at Aqueous Interfaces.- QM/MM Approaches for the Modeling of Photoinduced Processes in Biological Systems.- The Non Empirical Local Self Consistent Field Method. Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems.- Computational Study of the Initial Step in the Reaction Mechanism of Dehaloperoxidase A. Co
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue .- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems .
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue .- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems .
Adressing the Issues of Non-Additivity in the Development of Quantum Chemistry-Grounded Polarizable Molecular Mechanics.- Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptative QM/MM.- Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics.- Probing Proton Transfer Reactions in Molecular Dynamics- A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models.- Accelerating QM/MM Calculations by Using the Mean Field Approximation.- Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions.- Structure and Electronic Properties of Liquids and Complex Molecular Systems in Solution: Coupling Many-Body Energy Decomposition Schemes to Born-Oppenheimer Molecular Dynamics.- Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution.- Towards an Accurate Model for Halogens in Aqueous Solutions.- Theoretical Studies of the Solvation of abundant Toxic Mercury Species in Aqueous Media.- Advances in QM/MM Molecular Dynamics Simulations of Chemical Processes at Aqueous Interfaces.- QM/MM Approaches for the Modeling of Photoinduced Processes in Biological Systems.- The Non Empirical Local Self Consistent Field Method. Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems.- Computational Study of the Initial Step in the Reaction Mechanism of Dehaloperoxidase A. Co
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue.- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems.
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue.- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems.
Adressing the Issues of Non-Additivity in the Development of Quantum Chemistry-Grounded Polarizable Molecular Mechanics.- Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptative QM/MM.- Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics.- Probing Proton Transfer Reactions in Molecular Dynamics- A Crucial Prerequisite for QM/MM Simulations Using Dissociative Models.- Accelerating QM/MM Calculations by Using the Mean Field Approximation.- Development of a Massively Parallel QM/MM Approach Combined with a Theory of Solutions.- Structure and Electronic Properties of Liquids and Complex Molecular Systems in Solution: Coupling Many-Body Energy Decomposition Schemes to Born-Oppenheimer Molecular Dynamics.- Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution.- Towards an Accurate Model for Halogens in Aqueous Solutions.- Theoretical Studies of the Solvation of abundant Toxic Mercury Species in Aqueous Media.- Advances in QM/MM Molecular Dynamics Simulations of Chemical Processes at Aqueous Interfaces.- QM/MM Approaches for the Modeling of Photoinduced Processes in Biological Systems.- The Non Empirical Local Self Consistent Field Method. Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems.- Computational Study of the Initial Step in the Reaction Mechanism of Dehaloperoxidase A. Co
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue .- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems .
nsistent Assignment of the Protonation of Residues at the Active Site and the Movement of the His55 Residue .- Exploring Chemical Reactivity in Enzyme Catalyzed Processes Unsing QM/MM Methods. An Application to Dihydrofalate Reductase.- Multistate Modelling of In-Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles.- Computational Spectroscopy in Solution: Methods and Models for Investigating Complex Systems .