Major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, Josephson effects are covered and microscopically explained, using quantum statistical mechanical calculations. First treated are the 2D superconductivity and then the quantum Hall effects. Included are exercise-type problems for each section. Readers can grasp the concepts covered in the book by following the worked-through problems. Bibliographies are included in each chapter and a glossary and list of symbols are given in the beginning of the book.
The book is based on the materials taught by S. Fujita for several courses in Quantum Theory of Solids, Advanced Topics in Modern Physics, and Quantum Statistical Mechanics.
The book is based on the materials taught by S. Fujita for several courses in Quantum Theory of Solids, Advanced Topics in Modern Physics, and Quantum Statistical Mechanics.
From the reviews:
"This book, basing on a quantum statistical mechanical point of view, develops the pairon theory of superconductivity. ... In total, this comprehensive monograph ... presents a very well textbook on superconductivity theories. ... The methodical advantage of the book is that ... problems of the text are used as tasks for a self-verification and self-training. ... will be very useful for students and also for their teachers specializing into Physics of Condensed Media and related directions." (I. A. Parinov, Zentralblatt MATH, Vol. 1174, 2009)
"Textbook reviews the physics of superconductivity and other superfluid phenomena which occur when matter organizes itself in a totally different way than it is expected to behave. ... This nice manual is intended for Ph.D. students working in condensed matter physics who want to have a global yet detailed and condensed view of these collective effects. The chapters ... contain the essential material to understand the technical aspects of the second quantization method and eigenvalue problems for determining the ground states of these collective effects." (Jean-Yves Fortin, Mathematical Reviews, Issue 2011 k)
"This book, basing on a quantum statistical mechanical point of view, develops the pairon theory of superconductivity. ... In total, this comprehensive monograph ... presents a very well textbook on superconductivity theories. ... The methodical advantage of the book is that ... problems of the text are used as tasks for a self-verification and self-training. ... will be very useful for students and also for their teachers specializing into Physics of Condensed Media and related directions." (I. A. Parinov, Zentralblatt MATH, Vol. 1174, 2009)
"Textbook reviews the physics of superconductivity and other superfluid phenomena which occur when matter organizes itself in a totally different way than it is expected to behave. ... This nice manual is intended for Ph.D. students working in condensed matter physics who want to have a global yet detailed and condensed view of these collective effects. The chapters ... contain the essential material to understand the technical aspects of the second quantization method and eigenvalue problems for determining the ground states of these collective effects." (Jean-Yves Fortin, Mathematical Reviews, Issue 2011 k)