Quasiregular Mappings extend quasiconformal theory to thenoninjective case.They give a natural and beautifulgeneralization of the geometric aspects ofthe theory ofanalytic functions of one complex variable to Euclideann-space or, more generally, to Riemannian n-manifolds. Thisbook is a self-contained exposition of the subject. A braodspectrum of results of both analytic and geometric characterare presented, and the methods vary accordingly. The maintools are the variational integral method and the extremallength method, both of which are thoroughly developed here.Reshetnyak's basic theorem on…mehr
Quasiregular Mappings extend quasiconformal theory to thenoninjective case.They give a natural and beautifulgeneralization of the geometric aspects ofthe theory ofanalytic functions of one complex variable to Euclideann-space or, more generally, to Riemannian n-manifolds. Thisbook is a self-contained exposition of the subject. A braodspectrum of results of both analytic and geometric characterare presented, and the methods vary accordingly. The maintools are the variational integral method and the extremallength method, both of which are thoroughly developed here.Reshetnyak's basic theorem on discreteness and openness isused from the beginning, but the proof by means ofvariational integrals is postponed until near the end. Thus,the method of extremal length is being used at an earlystage and leads, among other things, to geometric proofs ofPicard-type theorems and a defect relation, which are someof the high points of the present book.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
I. Basic Properties of Quasiregular Mappings.- 1. ACLp Mappings.- 2. Quasiregular Mappings.- 3. Examples.- 4. Discrete Open Mappings.- II. Inequalities for Moduli of Path Families.- 1. Modulus of a Path Family.- 2. The KO-Inequality.- 3. Path Lifting.- 4. Linear Dilatations.- 5. Poletski?'s Lemma.- 6. Characterizations of Quasiregularity.- 7. Proof of Poletski?'s Lemma.- 8. Poletski?'s Inequality.- 9. Väisälä's Inequality.- 10. Capacity Inequalities.- III. Applications of Modulus Inequalities.- 1. Global Distortion.- 2. Sets of Capacity Zero and Singularities.- 3. The Injectivity Radius of a Local Homeomorphism.- 4. Local Distortion.- 5. Bounds for the Local Index.- IV. Mappings into the n-Sphere with Punctures.- 1. Coverings Averages.- 2. The Analogue of Picard's Theorem.- 3. Mappings of a Ball.- V. Value Distribution.- 1. Defect Relation.- 2. Coverings and Decomposition of Balls.- 3. Estimates on Liftings.- 4. Extremal Maximal Sequences of Liftings.- 5. Effect of the Defect Sum on the Liftings.- 6. Completion of the Proof of Defect Relations.- 7. Mappings of the Plane.- 8. Order of Growth.- 9. Further Results.- VI. Variational Integrals and Quasiregular Mappings.- 1. Extremals of Variational Integrals.- 2. Extremals and Quasiregular Mappings.- 3. Growth Estimates for Extremals.- 4. Differentiability of Quasiregular Mappings.- 5. Discreteness and Openness of Quasiregular Mappings.- 6. Pullbacks of General Kernels.- 7. Further Properties of Extremals.- 8. The Limit Theorem.- VII. Boundary Behavior.- 1. Removability.- 2. Asymptotic and Radial Limits.- 3. Continuity Results and the Reflection Principle.- 4. The Wiener Condition.- 5. F-Harmonic Measure.- 6. Phragmén-Lindelöf Type Theorems.- 7. Asymptotic Values.- List of Symbols.
I. Basic Properties of Quasiregular Mappings.- 1. ACLp Mappings.- 2. Quasiregular Mappings.- 3. Examples.- 4. Discrete Open Mappings.- II. Inequalities for Moduli of Path Families.- 1. Modulus of a Path Family.- 2. The KO-Inequality.- 3. Path Lifting.- 4. Linear Dilatations.- 5. Poletski?'s Lemma.- 6. Characterizations of Quasiregularity.- 7. Proof of Poletski?'s Lemma.- 8. Poletski?'s Inequality.- 9. Väisälä's Inequality.- 10. Capacity Inequalities.- III. Applications of Modulus Inequalities.- 1. Global Distortion.- 2. Sets of Capacity Zero and Singularities.- 3. The Injectivity Radius of a Local Homeomorphism.- 4. Local Distortion.- 5. Bounds for the Local Index.- IV. Mappings into the n-Sphere with Punctures.- 1. Coverings Averages.- 2. The Analogue of Picard's Theorem.- 3. Mappings of a Ball.- V. Value Distribution.- 1. Defect Relation.- 2. Coverings and Decomposition of Balls.- 3. Estimates on Liftings.- 4. Extremal Maximal Sequences of Liftings.- 5. Effect of the Defect Sum on the Liftings.- 6. Completion of the Proof of Defect Relations.- 7. Mappings of the Plane.- 8. Order of Growth.- 9. Further Results.- VI. Variational Integrals and Quasiregular Mappings.- 1. Extremals of Variational Integrals.- 2. Extremals and Quasiregular Mappings.- 3. Growth Estimates for Extremals.- 4. Differentiability of Quasiregular Mappings.- 5. Discreteness and Openness of Quasiregular Mappings.- 6. Pullbacks of General Kernels.- 7. Further Properties of Extremals.- 8. The Limit Theorem.- VII. Boundary Behavior.- 1. Removability.- 2. Asymptotic and Radial Limits.- 3. Continuity Results and the Reflection Principle.- 4. The Wiener Condition.- 5. F-Harmonic Measure.- 6. Phragmén-Lindelöf Type Theorems.- 7. Asymptotic Values.- List of Symbols.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826