Radar imaging, as understood here, involves target recognition, i.e. the determination of the detailed properties of an object (size, shape, structure and composition, and also location and speed) from radar echoes returned by it. Advanced approaches are required for this, and several of recent interest are discussed in this book. They include mathematical inverse-scattering techniques based on the solution of integral equations; use of the singularity expansion method (SEM), related to the resonance scattering theory (RST), in which the pattern of resonance-frequency location in the complex…mehr
Radar imaging, as understood here, involves target recognition, i.e. the determination of the detailed properties of an object (size, shape, structure and composition, and also location and speed) from radar echoes returned by it. Advanced approaches are required for this, and several of recent interest are discussed in this book. They include mathematical inverse-scattering techniques based on the solution of integral equations; use of the singularity expansion method (SEM), related to the resonance scattering theory (RST), in which the pattern of resonance-frequency location in the complex frequency plane can be employed to characterize a given radar target; and the use of polarization information. Finally, the measurement of radar cross-sections is described.
The reader of Radar Target Imaging will learn about recent advances in this field and obtain the background for carrying out his own research based on the advanced topics discussed in this book, e.g., mathematical inverse-scattering techniques based on the solution of integral equations; use of the singularity expansion method (SEM), related to the resonance scattering theory (RST), to characterize a given radar target. Also the measurement of radar cross-sections is described.
Inhaltsangabe
1 Introduction.- References.- 2 Radar Polarimetry: Applications to Radar Systems.- 2.1 Polarization Behavior of Different Radar Objects.- 2.2 Some Implementation Aspects.- 2.3 Optimum Radar Receivers for Target Detection in the Clear.- 2.4 Evaluation of Polarimetric Doppler Resolution Through Cramèr-Rao Bounds.- 2.5 Adaptive Polarization Cancellation of Partially Polarized Disturbance.- 2.6 Conclusions and Perspectives.- References.- 3 Fine Resolution of Radar Targets.- 3.1 Connection Between Creeping Waves and the Singularity Expansion Method.- 3.2 Surface Wave Resonances on Smooth Targets of General Shape.- 3.3 Application to Inverse Scattering.- 3.4 Conclusions.- References.- 4 A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering Within the Kirchhoff or Born Approximation.- 4.1 Integral Representations for Electromagnetic Scattering by Perfectly Conducting and Dielectric Scatterers.- 4.2 Linearization in Terms of the Born or Kirchhoff Approximation for Plane Wave Incidence.- 4.3 Dyadic Backpropagation in Terms of the Generalized Vector Holographic Fields.- 4.4 Solution of the Linearized Electric Vector Porter-Bojarski Equation in the Frequency Diversity Mode.- 4.5 Numerical Simulations.- 4.6 Conclusions.- 4.A Some Properties of Singular Functions.- 4.B Computation of the Generalized Vector Holographic Field in Terms of the Scattering Amplitude.- References.- 5 The Measurement of Radar Cross Section.- 5.1 Measurement Theory.- 5.2 The OSU Measurement Range.- 5.3 Performance Analysis.- 5.4 Analysis of RCS Measurements.- References.
1 Introduction.- References.- 2 Radar Polarimetry: Applications to Radar Systems.- 2.1 Polarization Behavior of Different Radar Objects.- 2.2 Some Implementation Aspects.- 2.3 Optimum Radar Receivers for Target Detection in the Clear.- 2.4 Evaluation of Polarimetric Doppler Resolution Through Cramèr-Rao Bounds.- 2.5 Adaptive Polarization Cancellation of Partially Polarized Disturbance.- 2.6 Conclusions and Perspectives.- References.- 3 Fine Resolution of Radar Targets.- 3.1 Connection Between Creeping Waves and the Singularity Expansion Method.- 3.2 Surface Wave Resonances on Smooth Targets of General Shape.- 3.3 Application to Inverse Scattering.- 3.4 Conclusions.- References.- 4 A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering Within the Kirchhoff or Born Approximation.- 4.1 Integral Representations for Electromagnetic Scattering by Perfectly Conducting and Dielectric Scatterers.- 4.2 Linearization in Terms of the Born or Kirchhoff Approximation for Plane Wave Incidence.- 4.3 Dyadic Backpropagation in Terms of the Generalized Vector Holographic Fields.- 4.4 Solution of the Linearized Electric Vector Porter-Bojarski Equation in the Frequency Diversity Mode.- 4.5 Numerical Simulations.- 4.6 Conclusions.- 4.A Some Properties of Singular Functions.- 4.B Computation of the Generalized Vector Holographic Field in Terms of the Scattering Amplitude.- References.- 5 The Measurement of Radar Cross Section.- 5.1 Measurement Theory.- 5.2 The OSU Measurement Range.- 5.3 Performance Analysis.- 5.4 Analysis of RCS Measurements.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826