This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.
In the modern semiconductor industry, there is a growing need to understand and combat potential radiation damage problems. Space applications are an obvious case, but, beyond that, today's device and circuit fabrication rely on increasing numbers of processing steps that involve an aggressive environment where inadvertant radiation damage can occur. This book is both aimed at post-graduate researchers seeking an overview of the field, and will also be immensely useful for nuclear and space engineers and even process engineers. A background knowledge of semiconductor and device physics is assumed, but the basic concepts are all briefly summarized. Finally the book outlines the shortcomings of present experimental and modeling techniques and gives an outlook on future developments.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
In the modern semiconductor industry, there is a growing need to understand and combat potential radiation damage problems. Space applications are an obvious case, but, beyond that, today's device and circuit fabrication rely on increasing numbers of processing steps that involve an aggressive environment where inadvertant radiation damage can occur. This book is both aimed at post-graduate researchers seeking an overview of the field, and will also be immensely useful for nuclear and space engineers and even process engineers. A background knowledge of semiconductor and device physics is assumed, but the basic concepts are all briefly summarized. Finally the book outlines the shortcomings of present experimental and modeling techniques and gives an outlook on future developments.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.