29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
15 °P sammeln
  • Broschiertes Buch

Wykrywanie anomalii jest podstawowym zagadnieniem w eksploracji danych, a w szczególno¿ci jest wykorzystywane do wykrywania i usuwania anomalii z danych. Nieprawid¿owo¿ci powstaj¿ na skutek usterek mechanicznych, zmian w zachowaniu systemu, oszustw, w¿amä do sieci lub b¿¿dów ludzkich. Skuteczne wykrywanie warto¿ci odstaj¿cych i mo¿liwo¿ci klastrowania danych w obecno¿ci warto¿ci odstaj¿cych oraz oparte na filtrowaniu danych po procesie klastrowania. Proponowany algorytm wykrywa eksperymenty odstaj¿ce w trzech etapach: (i) Wykrywanie niedoborów w obrazach; (ii) Wykrywanie nietypowych zdarze¿ w…mehr

Produktbeschreibung
Wykrywanie anomalii jest podstawowym zagadnieniem w eksploracji danych, a w szczególno¿ci jest wykorzystywane do wykrywania i usuwania anomalii z danych. Nieprawid¿owo¿ci powstaj¿ na skutek usterek mechanicznych, zmian w zachowaniu systemu, oszustw, w¿amä do sieci lub b¿¿dów ludzkich. Skuteczne wykrywanie warto¿ci odstaj¿cych i mo¿liwo¿ci klastrowania danych w obecno¿ci warto¿ci odstaj¿cych oraz oparte na filtrowaniu danych po procesie klastrowania. Proponowany algorytm wykrywa eksperymenty odstaj¿ce w trzech etapach: (i) Wykrywanie niedoborów w obrazach; (ii) Wykrywanie nietypowych zdarze¿ w strumieniach wideo; oraz (iii) Rzeczywiste zbiory danych benchmarków UCI.G¿ównym celem tego badania jest iteracyjne usuwanie obiektów, które znajduj¿ si¿ z dala od swoich centroidów klastrowych. G¿ównym celem tego badania jest iteracyjne usuwanie obiektów, które znajduj¿ si¿ z dala od swoich centroidów klastrowych. Usuwanie odbywa si¿ zgodnie z wybranym z góry zdefiniowanym progiem.G¿ównym celem tego badania jest iteracyjne usuwanie obiektów, które znajduj¿ si¿ z dala od swoich centroidów klastra.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
La Sra. A. Subhasheni se presenta como profesora adjunta del Departamento de Informática de la Facultad de Artes y Ciencias Sri Ramakrishna, Coimbatore, TamilNadu. Tiene cuatro años de experiencia docente en el nivel de UG.