Pavel M. Biehr
Random Matrix Models and Their Applications
Herausgeber: Bleher, Pavel M.; Its, Alexander R.
Pavel M. Biehr
Random Matrix Models and Their Applications
Herausgeber: Bleher, Pavel M.; Its, Alexander R.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.
Andere Kunden interessierten sich auch für
- Amaury FreslonCompact Matrix Quantum Groups and Their Combinatorics134,99 €
- Rudolf LidlIntroduction to Finite Fields and Their Applications167,99 €
- Armen S. AsratianBipartite Graphs and Their Applications75,99 €
- Greg W. AndersonAn Introduction to Random Matrices89,99 €
- Sarnak PeterSome Applications of Modular Forms37,99 €
- Boolean Models and Methods in Mathematics, Computer Science, and Engineering164,99 €
- S. M. VovsiTriangular Products of Group Representations and Their Applications42,99 €
-
-
-
Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 450
- Erscheinungstermin: 2. Februar 2011
- Englisch
- Abmessung: 240mm x 161mm x 29mm
- Gewicht: 837g
- ISBN-13: 9780521802093
- ISBN-10: 0521802091
- Artikelnr.: 33153774
- Verlag: Cambridge University Press
- Seitenzahl: 450
- Erscheinungstermin: 2. Februar 2011
- Englisch
- Abmessung: 240mm x 161mm x 29mm
- Gewicht: 837g
- ISBN-13: 9780521802093
- ISBN-10: 0521802091
- Artikelnr.: 33153774
1. Symmetrized random permutations Jinho Baik and Eric M. Rains; 2. Hankel
determinants as Fredholm determinants Estelle L. Basor, Yang Chen and
Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds
Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on
partitions, Robinson-Schensted-Knuth correspondence, and random matrix
ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and
random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics:
applications to folding and coloring Philippe Di Francesco; 7.
Inter-relationships between orthogonal, unitary and symplectic matrix
ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random
matrices John Harnad; 9. Orthogonal polynomials and random matrix theory
Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable
systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random
permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable
matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K.
Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin;
14. Integration over angular variables for two coupled matrices G. Mahoux,
M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16.
Integrable lattices: random matrices and random permutations Pierre Van
Moerbeke; 17. Some matrix integrals related to knots and links Paul
Zinn-Justin.
determinants as Fredholm determinants Estelle L. Basor, Yang Chen and
Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds
Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on
partitions, Robinson-Schensted-Knuth correspondence, and random matrix
ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and
random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics:
applications to folding and coloring Philippe Di Francesco; 7.
Inter-relationships between orthogonal, unitary and symplectic matrix
ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random
matrices John Harnad; 9. Orthogonal polynomials and random matrix theory
Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable
systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random
permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable
matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K.
Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin;
14. Integration over angular variables for two coupled matrices G. Mahoux,
M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16.
Integrable lattices: random matrices and random permutations Pierre Van
Moerbeke; 17. Some matrix integrals related to knots and links Paul
Zinn-Justin.
1. Symmetrized random permutations Jinho Baik and Eric M. Rains; 2. Hankel
determinants as Fredholm determinants Estelle L. Basor, Yang Chen and
Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds
Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on
partitions, Robinson-Schensted-Knuth correspondence, and random matrix
ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and
random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics:
applications to folding and coloring Philippe Di Francesco; 7.
Inter-relationships between orthogonal, unitary and symplectic matrix
ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random
matrices John Harnad; 9. Orthogonal polynomials and random matrix theory
Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable
systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random
permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable
matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K.
Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin;
14. Integration over angular variables for two coupled matrices G. Mahoux,
M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16.
Integrable lattices: random matrices and random permutations Pierre Van
Moerbeke; 17. Some matrix integrals related to knots and links Paul
Zinn-Justin.
determinants as Fredholm determinants Estelle L. Basor, Yang Chen and
Harold Widom; 3. Universality and scaling of zeros on symplectic manifolds
Pavel Bleher, Bernard Shiffman and Steve Zelditch; 4. Z measures on
partitions, Robinson-Schensted-Knuth correspondence, and random matrix
ensembles Alexei Borodin and Grigori Olshanski; 5. Phase transitions and
random matrices Giovanni M. Cicuta; 6. Matrix model combinatorics:
applications to folding and coloring Philippe Di Francesco; 7.
Inter-relationships between orthogonal, unitary and symplectic matrix
ensembles Peter J. Forrester and Eric M. Rains; 8. A note on random
matrices John Harnad; 9. Orthogonal polynomials and random matrix theory
Mourad E. H. Ismail; 10. Random words, Toeplitz determinants and integrable
systems I, Alexander R. Its, Craig A. Tracy and Harold Widom; 11. Random
permutations and the discrete Bessel kernel Kurt Johansson; 12. Solvable
matrix models Vladimir Kazakov; 13. Tau function for analytic Curves I. K.
Kostov, I. Krichever, M. Mineev-Vainstein, P. B. Wiegmann and A. Zabrodin;
14. Integration over angular variables for two coupled matrices G. Mahoux,
M. L. Mehta and J.-M. Normand; 15. SL and Z-measures Andrei Okounkov; 16.
Integrable lattices: random matrices and random permutations Pierre Van
Moerbeke; 17. Some matrix integrals related to knots and links Paul
Zinn-Justin.