Nonmonotonic reasoning is a discipline of computer science, epistemology, and cognition: It models inferences where classical logic is inadequate in symbolic AI, defines normative models for reasoning with defeasible information in epistemology, and models human reasoning under information change in cognition. Its building blocks are defeasible rules formalised as DeFinetti conditionals. In this thesis, Christian Eichhorn examines qualitative and semi-quantitative inference relations on top said conditionals, using the conditional structure of the knowledge base and Spohn's Ordinal Conditional Functions, using established properties. Converting network approaches from probabilistics, he shows how to approach the relations with regard to implementation.