Not available anywhere else, this groundbreaking volume presents a novel and unique approach to understand the complex chemical network behind the internal network structure of plants, a valuable tool for students of physics, biological physics, chemistry and biology, but also for sociologists and economists as well as for scientists in any field. Photosynthesis and the complex network within plants is becoming more important than ever, because of the earth's changing climate. In addition, the concepts can be used in other areas, and the science itself is useful in practical applications in…mehr
Not available anywhere else, this groundbreaking volume presents a novel and unique approach to understand the complex chemical network behind the internal network structure of plants, a valuable tool for students of physics, biological physics, chemistry and biology, but also for sociologists and economists as well as for scientists in any field. Photosynthesis and the complex network within plants is becoming more important than ever, because of the earth's changing climate. In addition, the concepts can be used in other areas, and the science itself is useful in practical applications in many branches of science, including medicine, biology, biophysics, and chemistry. This original, groundbreaking work by two highly experienced and well-known scientists introduces a new and different approach to thinking about living organisms, what we can learn from them, and how we can use the concepts within their scientific makeup in practice. This book describes the principles of complex signaling networks enabling spatiotemporally-directed macroscopic processes by the coupling of systems leading to a bottom-up information transfer in photosynthetic organisms. Top-down messengers triggered by macroscopic actuators like sunlight, gravity, environment or stress lead to an activation of the gene regulation on the molecular level. Mainly the generation and monitoring, as well the role of reactive oxygen species in photosynthetic organisms as typical messengers in complex networks, are described. A theoretical approach according to the principle of synergetics is presented to model light absorption, electron transfer and membrane dynamics in plants. A special focus will be attended to nonlinear processes that form the basic principle for the accumulation of energy reservoirs and large forces enabling the dynamics of macroscopic devices. This volume is a must-have for any scientist, student, or engineer working with photosynthesis. The concepts herein are not available anywhere else, in any other format, and it is truly a groundbreaking work with sure to be long-lasting effects on the scientific community. Reactive Oxygen Species: * Introduces a groundbreaking approach for understanding hierarchical networks in plants * Introduces Reactive Oxygen Species (ROS) as "messengers" within the complex network of the photosynthesis process * Suggests how the presented concepts can be used to describe other biological principles and multiscale hierarchical systems in society, politics and economy * Provides cutting-edge research not available anywhere else in any other formatHinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Franz-Josef Schmitt, PhD, is a researcher and group leader at Technische Universität Berlin (TU Berlin). Dr. Schmitt holds a series of scientific awards and has authored more than 80 research papers, two patents, one book chapter and 200 presentations that draw upon his research in photosynthesis, nanobiophotonics, environmental spectroscopy and didactics. He is a Coordinating Editor for the journal, Optofluidics, Microfluidics and Nanofluidics, Guest Editor for the journal, NanoPhotoBioSciences, and he is has been heavily involved in academic affairs at TU Berlin in multiple departments and committees. Suleyman I. Allakhverdiev, PhD, is the Head of the Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, in the Russian Academy of Sciences (RAS), Moscow. He is also the Chief Research Scientist at the Institute of Basic Biological Problems within RAS, a professor at Moscow State University, a professor at the Moscow Institute of Physics and Technology (State University), Head of Bionanotechnology Laboratory at the Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, and an Invited-Adjunct Professor in the Department of New Biology at the Daegu Gyeongbuk Institute of Science& Technology (DGIST), Daegu, Republic of Korea. He is Associate Editor of the International Journal of Hydrogen Energy, Associate Editor of the journal, Photosynthesis Research, Section Editor of BBA Bioenergetics, Associate Editor of Functional Plant Biology, Associate Editor of Photosynthetica, and a member of the editorial boards of 15 other international journals. He has been the Guest Editor of more than 30 special issues in peer-reviewed journals, and he has authored or co-authored over 400 papers in various scholarly journals. He has also written eight books and holds six patents. He has been working as a visiting professor in over 30 countries and has presented oral presentations at more than 80 international and national conferences. He has also organized ten international conferences on photosynthesis. and about 40 technical presentations.
Inhaltsangabe
Abstract ix Foreward 1 xi Foreward 2 xiii Preface xv 1 Multiscale Hierarchical Processes 1 1.1 Coupled Systems, Hierarchy and Emergence 2 1.2 Principles of Synergetics 12 1.3 Axiomatic Motivation of Rate Equations 15 1.4 Rate Equations in Photosynthesis 19 1.5 Top down and Bottom up Signaling 23 2 Photophysics, Photobiology and Photosynthesis 27 2.1 Light Induced State Dynamics 27 2.2 Rate Equations and Excited State Dynamics in Coupled Systems 41 2.3 Light-Harvesting, Energy and Charge Transfer and Primary Processes of Photosynthesis 64 2.4 Antenna Complexes in Photosynthetic Systems 70 2.5 Fluorescence Emission as a Tool for Monitoring PS II Function 91 2.6 Excitation Energy Transfer and Electron Transfer Steps in Cyanobacteria Modeled with Rate Equations 93 2.7 Excitation Energy and Electron Transfer in Higher Plants Modeled with Rate Equations 105 2.8 Nonphotochemical Quenching in Plants and Cyanobacteria 114 2.9 Hierarchical Architecture of Plants 118 3 Formation and Functional Role of Reactive Oxygen Species (ROS) 123 3.1 Generation, Decay and Deleterious Action of ROS 125 3.2 Monitoring of ROS 137 3.3 Signaling Role of ROS 151 4 ROS Signaling in Coupled Nonlinear Systems 157 4.1 Signaling by Superoxide and Hydrogen Peroxide in Cyanobacteria 158 4.2 Signaling by Singlet Oxygen and Hydrogen Peroxide in Eukaryotic Cells and Plants 163 4.3 ROS and Cell Redox Control and Interaction with the Nuclear Gene Expression 167 4.4 ROS as Top down and Bottom up Messengers 174 4.5 Second Messengers and Signaling Molecules in H2O2 Signaling Chains and (Nonlinear) Networking 191 4.6 ROS-Waves and Prey-Predator Models 192 4.7 Open Questions on ROS Coupling in Nonlinear Systems 196 5 Th e Role of ROS in Evolution 199 5.1 Th e Big Bang of the Ecosphere 200 5.2 Complicated Patterns Result from Simple Rules but Only the Useful Patterns are Stable 201 5.3 Genetic Diversity and Selection Pressure as Driving Forces for Evolution 205 6 Outlook: Control and Feedback in Hierarchical Systems in Society, Politics and Economics 209 Bibliography 213 Appendix 249 Index 259
Abstract ix Foreward 1 xi Foreward 2 xiii Preface xv 1 Multiscale Hierarchical Processes 1 1.1 Coupled Systems, Hierarchy and Emergence 2 1.2 Principles of Synergetics 12 1.3 Axiomatic Motivation of Rate Equations 15 1.4 Rate Equations in Photosynthesis 19 1.5 Top down and Bottom up Signaling 23 2 Photophysics, Photobiology and Photosynthesis 27 2.1 Light Induced State Dynamics 27 2.2 Rate Equations and Excited State Dynamics in Coupled Systems 41 2.3 Light-Harvesting, Energy and Charge Transfer and Primary Processes of Photosynthesis 64 2.4 Antenna Complexes in Photosynthetic Systems 70 2.5 Fluorescence Emission as a Tool for Monitoring PS II Function 91 2.6 Excitation Energy Transfer and Electron Transfer Steps in Cyanobacteria Modeled with Rate Equations 93 2.7 Excitation Energy and Electron Transfer in Higher Plants Modeled with Rate Equations 105 2.8 Nonphotochemical Quenching in Plants and Cyanobacteria 114 2.9 Hierarchical Architecture of Plants 118 3 Formation and Functional Role of Reactive Oxygen Species (ROS) 123 3.1 Generation, Decay and Deleterious Action of ROS 125 3.2 Monitoring of ROS 137 3.3 Signaling Role of ROS 151 4 ROS Signaling in Coupled Nonlinear Systems 157 4.1 Signaling by Superoxide and Hydrogen Peroxide in Cyanobacteria 158 4.2 Signaling by Singlet Oxygen and Hydrogen Peroxide in Eukaryotic Cells and Plants 163 4.3 ROS and Cell Redox Control and Interaction with the Nuclear Gene Expression 167 4.4 ROS as Top down and Bottom up Messengers 174 4.5 Second Messengers and Signaling Molecules in H2O2 Signaling Chains and (Nonlinear) Networking 191 4.6 ROS-Waves and Prey-Predator Models 192 4.7 Open Questions on ROS Coupling in Nonlinear Systems 196 5 Th e Role of ROS in Evolution 199 5.1 Th e Big Bang of the Ecosphere 200 5.2 Complicated Patterns Result from Simple Rules but Only the Useful Patterns are Stable 201 5.3 Genetic Diversity and Selection Pressure as Driving Forces for Evolution 205 6 Outlook: Control and Feedback in Hierarchical Systems in Society, Politics and Economics 209 Bibliography 213 Appendix 249 Index 259
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826