104,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
52 °P sammeln
  • Gebundenes Buch

Focusing on the architecture and implementation of algorithms, this volume presents real-time and causal processing implementation, as well as architectures of FPGA design and parallel processing. Readers will find coverage of applications to both imaging and medical imaging.
The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive HyperSpectral Imaging (PHSI) and Recursive HyperSpectral Imaging (RHSI). Both of these can be used to design…mehr

Produktbeschreibung
Focusing on the architecture and implementation of algorithms, this volume presents real-time and causal processing implementation, as well as architectures of FPGA design and parallel processing. Readers will find coverage of applications to both imaging and medical imaging.
The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive HyperSpectral Imaging (PHSI) and Recursive HyperSpectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book.

Autorenporträt
Chein-I Chang is a Professor with the Department of Computer Science and Electrical Engineering at the University of Maryland, Baltimore County. His Remote Sensing Signal and Image Processing Laboratory (RSSIPL) conducts research in designing and developing signal processing algorithms for multispectral and hyperspectral imaging, medical imaging. Dr. Chang has published over 150 referred journal articles, including more than 50 papers in the IEEE Transaction on Geoscience and Remote Sensing alone and four patents with several pending on hyperspectral image processing. He authored two books, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Kluwer Academic Publishers, 2003) and Hyperspectral Data Processing: Algorithm Design and Analysis (Wiley, 2013). He also edited two books, Recent Advances in Hyperspectral Signal and Image Processing (Trasworld Research Network, India, 2006) and Hyperspectral Data Exploitation: Theory and Applications (John Wiley & Sons, 2007) and co-edited, with A. Plaza, a book on High Performance Computing in Remote Sensing (CRC Press, 2007).  Dr. Chang has received his Ph.D. in Electrical Engineering from University of Maryland, College Park, Maryland. He is a Fellow of IEEE and SPIE with contributions to hyperspectral image processing.