Gel chemistry is formed by small molecules self-assembling under the influence of various non-covalent interactions. It can be easily perturbed, which allows for careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time variable changes in material properties. When exposed to external stimuli such as temperature, pH, light, enzyme, redox, and chemical analytes, such materials may become switchable, leading to the reconfiguration of the gel matrix into a different type of network. The transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. The dynamic modification of gels allows the construction of an array of gels with various properties from a single material which eventually extends the limit of applications of the gels.