This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a…mehr
This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.
Professor Piotr Doerffer is Deputy Director for Scientific Issues within the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk, Poland; Dr. George Barakos is Professor of Aerospace Sciences, School of Engineering, University of Glasgow, United Kingdom; and Dr. Marcin Luczak is a Research Associate within the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk, Poland.
Inhaltsangabe
Part 1: Introduction to Flow control Technology.- Introduction and Literature Survey.- Part 2: Design of modern Gurney Flap.- CFD Method for Modelling Gurney Flaps.- Performance Enhancement of Rotors in Hover Using Fixed Gurney Flaps.- Alleviation of Retreating Side Stall Using Active Gurney Flaps.- Effect of Gurney Flaps on Overall Helicopter Flight Envelope.- Active Gurney Flap Unit.- Gurney Flap Force Calculation.- Part 3: Design of Rod Vortex Generator.- Investigation of Vortex Generators on Channels and Airfoils.- Implementation of Rod Vortex Generators on Helicopter Rotor Blades in Hover and Forward Flight Conditions.- Retractable Rod Vortex Generator.- Part 4: Important issues in Synthetic Jet Design.- Numerical Simulation of a Synthetic Jet Actuator for Active Flow Control.- Introduction to the Synthetic Jet Flow Control and Drag Reduction Techniques.- Experimental results of Synthetic Jet Wind Tunnel Tests.- Part 5: Multi Physics Co-Simulation Methods.- Fluid-Structure Interaction Simulation.- Analysis and Optimization of Flow Around Flexible Wings and Blades Using the Standard Co-Simulation Interface MpCCI.- Numerical Simulation of Air Flow and Acoustic Field Around a Passenger Car Model Using Euler Approach and Hybrid Meshing.- Computation of Rotorcraft Stability Derivatives Using the Discrete Adjoint Method.- Part 6: Structural Dynamics of Blades and Components.- Dynamics of the Synthetic Jet Actuator Investigation by the Numerical and Experimental Approach.- Thermal Synthetic Jet Actuator Investigation by Experimental Approach.- Modal Analysis of PZL-W-3/W-3A Sokol Main Rotor.- Strain Modal Analysis of the Blade.- Uncertainty Quantification of the Main Rotor Blades Measurements.- Temperature Compensation Methods for Elastic Wave Based SHM.
Part 1: Introduction to Flow control Technology.- Introduction and Literature Survey.- Part 2: Design of modern Gurney Flap.- CFD Method for Modelling Gurney Flaps.- Performance Enhancement of Rotors in Hover Using Fixed Gurney Flaps.- Alleviation of Retreating Side Stall Using Active Gurney Flaps.- Effect of Gurney Flaps on Overall Helicopter Flight Envelope.- Active Gurney Flap Unit.- Gurney Flap Force Calculation.- Part 3: Design of Rod Vortex Generator.- Investigation of Vortex Generators on Channels and Airfoils.- Implementation of Rod Vortex Generators on Helicopter Rotor Blades in Hover and Forward Flight Conditions.- Retractable Rod Vortex Generator.- Part 4: Important issues in Synthetic Jet Design.- Numerical Simulation of a Synthetic Jet Actuator for Active Flow Control.- Introduction to the Synthetic Jet Flow Control and Drag Reduction Techniques.- Experimental results of Synthetic Jet Wind Tunnel Tests.- Part 5: Multi Physics Co-Simulation Methods.- Fluid-Structure Interaction Simulation.- Analysis and Optimization of Flow Around Flexible Wings and Blades Using the Standard Co-Simulation Interface MpCCI.- Numerical Simulation of Air Flow and Acoustic Field Around a Passenger Car Model Using Euler Approach and Hybrid Meshing.- Computation of Rotorcraft Stability Derivatives Using the Discrete Adjoint Method.- Part 6: Structural Dynamics of Blades and Components.- Dynamics of the Synthetic Jet Actuator Investigation by the Numerical and Experimental Approach.- Thermal Synthetic Jet Actuator Investigation by Experimental Approach.- Modal Analysis of PZL-W-3/W-3A Sokol Main Rotor.- Strain Modal Analysis of the Blade.- Uncertainty Quantification of the Main Rotor Blades Measurements.- Temperature Compensation Methods for Elastic Wave Based SHM.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497