- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book describes varied aspects involved in dealing with extraction and utilization of bioactive compounds from the food industry waste. It covers global scenario of food waste generation and potential of food waste on various industries, extraction techniques, and application of industrial food waste derived bioactive compounds.
Andere Kunden interessierten sich auch für
- Solid State Fermentation for Foods and Beverages101,99 €
- Ecosustainable Polymer Nanomaterials for Food Packaging73,99 €
- Ali OsmanProgress in Food Biotechnology123,99 €
- Innovative Food Science and Emerging Technologies109,99 €
- Trends in Food Engineering90,99 €
- Phytosterols as Functional Food Components and Nutraceuticals85,99 €
- Gustavo V Barbosa-CanovasFood Engineering Laboratory Manual86,99 €
-
-
-
This book describes varied aspects involved in dealing with extraction and utilization of bioactive compounds from the food industry waste. It covers global scenario of food waste generation and potential of food waste on various industries, extraction techniques, and application of industrial food waste derived bioactive compounds.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd (Sales)
- Seitenzahl: 220
- Erscheinungstermin: 9. Oktober 2024
- Englisch
- Abmessung: 254mm x 178mm x 13mm
- Gewicht: 417g
- ISBN-13: 9781032325262
- ISBN-10: 1032325267
- Artikelnr.: 71605957
- Verlag: Taylor & Francis Ltd (Sales)
- Seitenzahl: 220
- Erscheinungstermin: 9. Oktober 2024
- Englisch
- Abmessung: 254mm x 178mm x 13mm
- Gewicht: 417g
- ISBN-13: 9781032325262
- ISBN-10: 1032325267
- Artikelnr.: 71605957
Mihir Kumar Purkait
1. Food waste as a potential source of bioactive compounds. 1.1. Overview
of food waste. 1.2. Environmental effects and management approach. 1.3.
Valorization of food waste in various applications. 1.4. Conclusions.
References. 2. Current status and future trends of various food industry
waste processing for synthesis of bioactive compounds. 2.1. Introduction.
2.2. Bioactive compounds in various food industry waste. 2.3. Commercial
aspects. 2.4. Challenges and future perspective. 2.5. Conclusions.
References. 3. Technological advancement in the extraction of bioactive
compounds from food industry waste. 3.1. Introduction. 3.2. Conventional
methods for the extraction of bioactive compounds. 3.3. Progress in the
extraction of bioactive compounds. 3.4. Commercial utilization of the
extraction process. 3.5. Conclusions. References. 4. Recovery of bioactive
compounds from fruit and vegetable peel. 4.1. Introduction. 4.2. Recovery
of bioactive compounds from fruit peel. 4.4. Conclusions. References. 5.
Utilization of seeds for the synthesis of bioactive compounds. 5.1.
Introduction. 5.2. Characteristics and nutrient loss in fruit and vegetable
waste. 5.3. Bioactive compounds in fruit and vegetable seeds. 5.4.
Conclusions. References. 6. Sustainable green processing of various fruit
and vegetable pomace from the food industry for the synthesis of bioactive
compounds 6.1. Introduction. 6.2. Synthesis of bioactive compounds form
fruit and vegetable pomace. 6.3. Challenges and future perspectives. 6.4.
Conclusions. References. 7. Extraction of bioactive compounds from marine
by-products. 7.1. Introduction. 7.2. Bioactive element available in Marnie
by-products. 7.3. Technological advancement in the extraction process. 7.4.
Commercial aspects. 7.5. Challenges and future perspectives. 7.6.
Conclusions. References. 8. Extraction of bioactive compounds from tea,
coffee and wine processing waste. 8.1. Introduction. 8.2. Present status of
tea, coffee and wine production. 8.3. Extraction of bioactive compounds.
8.4. Conclusions.References. 9. Commercial aspects of bioactive compounds
extracted from food waste. 9.1. Introduction. 9.2. Utilization of bioactive
compounds in various industries. 9.3. Challenges and future trends. 9.4.
Conclusion. References. 10. Food waste management and valorization policies
of various countries. 10.1. Introduction. 10.2. International goals and
agreements. 10.3. Policies of various countries. 10.4. Major challenges.
10.5. Conclusions. References.
of food waste. 1.2. Environmental effects and management approach. 1.3.
Valorization of food waste in various applications. 1.4. Conclusions.
References. 2. Current status and future trends of various food industry
waste processing for synthesis of bioactive compounds. 2.1. Introduction.
2.2. Bioactive compounds in various food industry waste. 2.3. Commercial
aspects. 2.4. Challenges and future perspective. 2.5. Conclusions.
References. 3. Technological advancement in the extraction of bioactive
compounds from food industry waste. 3.1. Introduction. 3.2. Conventional
methods for the extraction of bioactive compounds. 3.3. Progress in the
extraction of bioactive compounds. 3.4. Commercial utilization of the
extraction process. 3.5. Conclusions. References. 4. Recovery of bioactive
compounds from fruit and vegetable peel. 4.1. Introduction. 4.2. Recovery
of bioactive compounds from fruit peel. 4.4. Conclusions. References. 5.
Utilization of seeds for the synthesis of bioactive compounds. 5.1.
Introduction. 5.2. Characteristics and nutrient loss in fruit and vegetable
waste. 5.3. Bioactive compounds in fruit and vegetable seeds. 5.4.
Conclusions. References. 6. Sustainable green processing of various fruit
and vegetable pomace from the food industry for the synthesis of bioactive
compounds 6.1. Introduction. 6.2. Synthesis of bioactive compounds form
fruit and vegetable pomace. 6.3. Challenges and future perspectives. 6.4.
Conclusions. References. 7. Extraction of bioactive compounds from marine
by-products. 7.1. Introduction. 7.2. Bioactive element available in Marnie
by-products. 7.3. Technological advancement in the extraction process. 7.4.
Commercial aspects. 7.5. Challenges and future perspectives. 7.6.
Conclusions. References. 8. Extraction of bioactive compounds from tea,
coffee and wine processing waste. 8.1. Introduction. 8.2. Present status of
tea, coffee and wine production. 8.3. Extraction of bioactive compounds.
8.4. Conclusions.References. 9. Commercial aspects of bioactive compounds
extracted from food waste. 9.1. Introduction. 9.2. Utilization of bioactive
compounds in various industries. 9.3. Challenges and future trends. 9.4.
Conclusion. References. 10. Food waste management and valorization policies
of various countries. 10.1. Introduction. 10.2. International goals and
agreements. 10.3. Policies of various countries. 10.4. Major challenges.
10.5. Conclusions. References.
1. Food waste as a potential source of bioactive compounds. 1.1. Overview
of food waste. 1.2. Environmental effects and management approach. 1.3.
Valorization of food waste in various applications. 1.4. Conclusions.
References. 2. Current status and future trends of various food industry
waste processing for synthesis of bioactive compounds. 2.1. Introduction.
2.2. Bioactive compounds in various food industry waste. 2.3. Commercial
aspects. 2.4. Challenges and future perspective. 2.5. Conclusions.
References. 3. Technological advancement in the extraction of bioactive
compounds from food industry waste. 3.1. Introduction. 3.2. Conventional
methods for the extraction of bioactive compounds. 3.3. Progress in the
extraction of bioactive compounds. 3.4. Commercial utilization of the
extraction process. 3.5. Conclusions. References. 4. Recovery of bioactive
compounds from fruit and vegetable peel. 4.1. Introduction. 4.2. Recovery
of bioactive compounds from fruit peel. 4.4. Conclusions. References. 5.
Utilization of seeds for the synthesis of bioactive compounds. 5.1.
Introduction. 5.2. Characteristics and nutrient loss in fruit and vegetable
waste. 5.3. Bioactive compounds in fruit and vegetable seeds. 5.4.
Conclusions. References. 6. Sustainable green processing of various fruit
and vegetable pomace from the food industry for the synthesis of bioactive
compounds 6.1. Introduction. 6.2. Synthesis of bioactive compounds form
fruit and vegetable pomace. 6.3. Challenges and future perspectives. 6.4.
Conclusions. References. 7. Extraction of bioactive compounds from marine
by-products. 7.1. Introduction. 7.2. Bioactive element available in Marnie
by-products. 7.3. Technological advancement in the extraction process. 7.4.
Commercial aspects. 7.5. Challenges and future perspectives. 7.6.
Conclusions. References. 8. Extraction of bioactive compounds from tea,
coffee and wine processing waste. 8.1. Introduction. 8.2. Present status of
tea, coffee and wine production. 8.3. Extraction of bioactive compounds.
8.4. Conclusions.References. 9. Commercial aspects of bioactive compounds
extracted from food waste. 9.1. Introduction. 9.2. Utilization of bioactive
compounds in various industries. 9.3. Challenges and future trends. 9.4.
Conclusion. References. 10. Food waste management and valorization policies
of various countries. 10.1. Introduction. 10.2. International goals and
agreements. 10.3. Policies of various countries. 10.4. Major challenges.
10.5. Conclusions. References.
of food waste. 1.2. Environmental effects and management approach. 1.3.
Valorization of food waste in various applications. 1.4. Conclusions.
References. 2. Current status and future trends of various food industry
waste processing for synthesis of bioactive compounds. 2.1. Introduction.
2.2. Bioactive compounds in various food industry waste. 2.3. Commercial
aspects. 2.4. Challenges and future perspective. 2.5. Conclusions.
References. 3. Technological advancement in the extraction of bioactive
compounds from food industry waste. 3.1. Introduction. 3.2. Conventional
methods for the extraction of bioactive compounds. 3.3. Progress in the
extraction of bioactive compounds. 3.4. Commercial utilization of the
extraction process. 3.5. Conclusions. References. 4. Recovery of bioactive
compounds from fruit and vegetable peel. 4.1. Introduction. 4.2. Recovery
of bioactive compounds from fruit peel. 4.4. Conclusions. References. 5.
Utilization of seeds for the synthesis of bioactive compounds. 5.1.
Introduction. 5.2. Characteristics and nutrient loss in fruit and vegetable
waste. 5.3. Bioactive compounds in fruit and vegetable seeds. 5.4.
Conclusions. References. 6. Sustainable green processing of various fruit
and vegetable pomace from the food industry for the synthesis of bioactive
compounds 6.1. Introduction. 6.2. Synthesis of bioactive compounds form
fruit and vegetable pomace. 6.3. Challenges and future perspectives. 6.4.
Conclusions. References. 7. Extraction of bioactive compounds from marine
by-products. 7.1. Introduction. 7.2. Bioactive element available in Marnie
by-products. 7.3. Technological advancement in the extraction process. 7.4.
Commercial aspects. 7.5. Challenges and future perspectives. 7.6.
Conclusions. References. 8. Extraction of bioactive compounds from tea,
coffee and wine processing waste. 8.1. Introduction. 8.2. Present status of
tea, coffee and wine production. 8.3. Extraction of bioactive compounds.
8.4. Conclusions.References. 9. Commercial aspects of bioactive compounds
extracted from food waste. 9.1. Introduction. 9.2. Utilization of bioactive
compounds in various industries. 9.3. Challenges and future trends. 9.4.
Conclusion. References. 10. Food waste management and valorization policies
of various countries. 10.1. Introduction. 10.2. International goals and
agreements. 10.3. Policies of various countries. 10.4. Major challenges.
10.5. Conclusions. References.