- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Dieses Lehrbuch führt in die Theorie der linearen dynamischen Mehrgrößensysteme ein. Das Verhalten dieser Systeme unter dem Einfluss von deterministischen und stochastischen Signalen wird im Zeit- und Frequenzbereich analysiert. Klassische und moderne Methoden des Reglerentwurfs, zeitkontinuierliche und digitale Regler, suboptimale Beobachter und Kalman-Bucy-Filter sind Gegenstand des Buches. Die sechste Auflage wurde besonders im Bereich der klassischen Regelung überarbeitet und erweitert.
Aufgaben mit Lösungen zu den jeweiligen Kapiteln dienen Studenten und Praktikern zur Einübung des Gelernten und zur Selbstkontrolle. …mehr
Andere Kunden interessierten sich auch für
- Günter LudykTheoretische Regelungstechnik 149,99 €
- Helmut UlrichLaplace-Transformation, Diskrete Fourier-Transformation und z-Transformation39,99 €
- Werner LeonhardDigitale Signalverarbeitung in der Meß- und Regelungstechnik49,99 €
- Hans Wilhelm SchüßlerNetzwerke, Signale und Systeme54,99 €
- Heinz MannEinführung in die Regelungstechnik34,99 €
- Rolf UnbehauenGrundlagen der Elektrotechnik 269,99 €
- Hans W. SchüßlerNetzwerke, Signale und Systeme49,99 €
-
-
-
Dieses Lehrbuch führt in die Theorie der linearen dynamischen Mehrgrößensysteme ein. Das Verhalten dieser Systeme unter dem Einfluss von deterministischen und stochastischen Signalen wird im Zeit- und Frequenzbereich analysiert. Klassische und moderne Methoden des Reglerentwurfs, zeitkontinuierliche und digitale Regler, suboptimale Beobachter und Kalman-Bucy-Filter sind Gegenstand des Buches. Die sechste Auflage wurde besonders im Bereich der klassischen Regelung überarbeitet und erweitert.
Aufgaben mit Lösungen zu den jeweiligen Kapiteln dienen Studenten und Praktikern zur Einübung des Gelernten und zur Selbstkontrolle.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Aufgaben mit Lösungen zu den jeweiligen Kapiteln dienen Studenten und Praktikern zur Einübung des Gelernten und zur Selbstkontrolle.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Springer-Lehrbuch
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-40507-8
- 6., neubearb. u. erg. Aufl.
- Seitenzahl: 352
- Erscheinungstermin: 10. September 2003
- Deutsch
- Abmessung: 235mm x 155mm x 20mm
- Gewicht: 539g
- ISBN-13: 9783540405078
- ISBN-10: 3540405070
- Artikelnr.: 03401804
- Springer-Lehrbuch
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-540-40507-8
- 6., neubearb. u. erg. Aufl.
- Seitenzahl: 352
- Erscheinungstermin: 10. September 2003
- Deutsch
- Abmessung: 235mm x 155mm x 20mm
- Gewicht: 539g
- ISBN-13: 9783540405078
- ISBN-10: 3540405070
- Artikelnr.: 03401804
Hans Peter Geering, ETH Zürich
1 Einleitung.- Literatur zu Kapitel 1.- Aufgaben zu Kapitel 1.- 2 Analyse linearer zeitinvarianter Systeme im Frequenzbereich.- 2.1 Die Bewegungsgleichungen.- 2.2 Die Laplace-Transformation.- 2.3 Lösung der Bewegungsgleichungen.- 2.4 Die Übertragungsfunktion.- 2.5 Stabilität.- 2.6 Der Frequenzgang.- 2.7 Literatur zu Kapitel 2.- 2.8 Aufgaben zu Kapitel 2.- 3 Behandlung einfacher regelungstechnischer Probleme im Frequenzbereich.- 3.1 Lineare Reglerbausteine.- 3.2 Klassische Folgeregelung.- 3.3 Das Nyquist-Kriterium.- 3.4 Regelung mit Vorsteuerung.- 3.5 Literatur zu Kapitel 3.- 3.6 Aufgaben zu Kapitel 3.- Analyse linearer Systeme im Zeitbereich.- 4.1 Der Zustandsvektor und die Bewegungsgleichung.- 4.2 Übergang von einer Differentialgleichung höherer Ordnung auf eine Vektordifferentialgleichung erster Ordnung.- 4.3 Übergang von der Vektordifferentialgleichung 1. Ordnung auf die Übertragungsmatrix.- 4.4 Lösung der Bewegungsgleichung.- 4.5 Stabilität.- 4.6 Steuerbarkeit und Stabilisierbarkeit.- 4.7 Beobachtbarkeit und Detektierbarkeit.- 4.8 Lineare Matrizen-Differentialgleichungen.- 4.9 Literatur zu Kapitel 4.- 4.10 Aufgaben zu Kapitel 4.- 5 Entwurf von Reglern mit linearer Zustandsrückführung.- 5.1 Warum lineare Zustandsrückführung?.- 5.2 Das zeitvariable LQ-Regulator-Problem.- 5.3 Das zeitinvariante LQ-Regulator-Problem.- 5.4 LQ-Folgeregelungs-Probleme.- 5.5 Literatur zu Kapitel 5.- 5.6 Aufgaben zu Kapitel 5.- 6 Entwurf von Reglern mit linearer Ausgangsrückführung.- 6.1 Der Luenberger-Beobachter.- 6.2 Das Separations-Theorem.- 6.3 Mehrgrößen-Folgeregelung.- 6.4 Fallstudie: Ottomotor.- 6.5 Literatur zu Kapitel 6.- 6.6 Aufgaben zu Kapitel 6.- 7 Systembetrachtungen zum Messen und Stellen.- 7.1 Literatur zu Kapitel 7.- 7.2 Aufgabe zu Kapitel 7.- 8 Beschreibungvon Zufallsprozessen im Zeitbereich.- 8.1 Dynamische Messung.- 8.2 Zufallsprozesse und ihre Kennzeichnung im Zeitbereich.- 8.3 Weißes Rauschen.- 8.4 Literatur zu Kapitel 8.- 8.5 Aufgaben zu Kapitel 8.- 9 Analyse stochastischer linearer dynamischer Systeme im Zeitbereich.- 9.1 Farbiges Rauschen als Eingangsvektor.- 9.2 Weißes Rauschen als Eingangsvektor.- 9.3 Stationäres weißes Rauschen als Eingangsvektor.- 9.4 Beispiele.- 9.5 Das Kalman-Bucy Filter.- 9.6 Literatur zu Kapitel 9.- 9.7 Aufgaben zu Kapitel 9.- 10 Beschreibung stationärer Zufallsprozesse im Frequenzbereich.- 10.1 Spektrum oder spektrale Leistungsdichte eines stationären Zufallsprozesses.- 10.2 Interpretation des Spektrums.- 10.3 Beispiele.- 10.4 Behandlung des Erwartungswerts des Signals.- 10.5 Eigenschaften des Spektrums.- 10.6 Literatur zu Kapitel 10.- 10.7 Aufgaben zu Kapitel 10.- 11 Analyse stochastischer linearer zeitinvarianter dynamischer Systeme im Frequenzbereich.- 11.1 Problemstellung.- 11.2 Spektrum des Ausgangsvektors.- 11.3 Dezibel-Skala für Spektren.- 11.4 Beispiele.- 11.5 Literatur zu Kapitel 11.- 11.6 Aufgaben zu Kapitel 11.- 12 Digitale Regelung.- 12.1 Grundsätzliche Funktionsweise.- 12.2 Signalabtastung.- 12.3 Signalrekonstruktion.- 12.4 Analyse zeitdiskreter linearer Systeme.- 12.5 Stochastik.- 12.6 Synthese zeitdiskreter Regler.- 12.7 Literatur zu Kapitel 12.- 12.8 Aufgaben zu Kapitel 12.- Lösungen zu den Aufgaben.- Anhang 1. Komplexe Zahlen.- Anhang 2. Bode-Diagramme.- Anhang 3. Lineare Algebra.- Anhang 4. Linearisierung eines nichtlinearen dynamischen Systems um eine Nominaltrajektorie herum.- Anhang 5. Wahrscheinlichkeitslehre.
1 Einleitung.- Literatur zu Kapitel 1.- Aufgaben zu Kapitel 1.- 2 Analyse linearer zeitinvarianter Systeme im Frequenzbereich.- 2.1 Die Bewegungsgleichungen.- 2.2 Die Laplace-Transformation.- 2.3 Lösung der Bewegungsgleichungen.- 2.4 Die Übertragungsfunktion.- 2.5 Stabilität.- 2.6 Der Frequenzgang.- 2.7 Literatur zu Kapitel 2.- 2.8 Aufgaben zu Kapitel 2.- 3 Behandlung einfacher regelungstechnischer Probleme im Frequenzbereich.- 3.1 Lineare Reglerbausteine.- 3.2 Klassische Folgeregelung.- 3.3 Das Nyquist-Kriterium.- 3.4 Regelung mit Vorsteuerung.- 3.5 Literatur zu Kapitel 3.- 3.6 Aufgaben zu Kapitel 3.- Analyse linearer Systeme im Zeitbereich.- 4.1 Der Zustandsvektor und die Bewegungsgleichung.- 4.2 Übergang von einer Differentialgleichung höherer Ordnung auf eine Vektordifferentialgleichung erster Ordnung.- 4.3 Übergang von der Vektordifferentialgleichung 1. Ordnung auf die Übertragungsmatrix.- 4.4 Lösung der Bewegungsgleichung.- 4.5 Stabilität.- 4.6 Steuerbarkeit und Stabilisierbarkeit.- 4.7 Beobachtbarkeit und Detektierbarkeit.- 4.8 Lineare Matrizen-Differentialgleichungen.- 4.9 Literatur zu Kapitel 4.- 4.10 Aufgaben zu Kapitel 4.- 5 Entwurf von Reglern mit linearer Zustandsrückführung.- 5.1 Warum lineare Zustandsrückführung?.- 5.2 Das zeitvariable LQ-Regulator-Problem.- 5.3 Das zeitinvariante LQ-Regulator-Problem.- 5.4 LQ-Folgeregelungs-Probleme.- 5.5 Literatur zu Kapitel 5.- 5.6 Aufgaben zu Kapitel 5.- 6 Entwurf von Reglern mit linearer Ausgangsrückführung.- 6.1 Der Luenberger-Beobachter.- 6.2 Das Separations-Theorem.- 6.3 Mehrgrößen-Folgeregelung.- 6.4 Fallstudie: Ottomotor.- 6.5 Literatur zu Kapitel 6.- 6.6 Aufgaben zu Kapitel 6.- 7 Systembetrachtungen zum Messen und Stellen.- 7.1 Literatur zu Kapitel 7.- 7.2 Aufgabe zu Kapitel 7.- 8 Beschreibungvon Zufallsprozessen im Zeitbereich.- 8.1 Dynamische Messung.- 8.2 Zufallsprozesse und ihre Kennzeichnung im Zeitbereich.- 8.3 Weißes Rauschen.- 8.4 Literatur zu Kapitel 8.- 8.5 Aufgaben zu Kapitel 8.- 9 Analyse stochastischer linearer dynamischer Systeme im Zeitbereich.- 9.1 Farbiges Rauschen als Eingangsvektor.- 9.2 Weißes Rauschen als Eingangsvektor.- 9.3 Stationäres weißes Rauschen als Eingangsvektor.- 9.4 Beispiele.- 9.5 Das Kalman-Bucy Filter.- 9.6 Literatur zu Kapitel 9.- 9.7 Aufgaben zu Kapitel 9.- 10 Beschreibung stationärer Zufallsprozesse im Frequenzbereich.- 10.1 Spektrum oder spektrale Leistungsdichte eines stationären Zufallsprozesses.- 10.2 Interpretation des Spektrums.- 10.3 Beispiele.- 10.4 Behandlung des Erwartungswerts des Signals.- 10.5 Eigenschaften des Spektrums.- 10.6 Literatur zu Kapitel 10.- 10.7 Aufgaben zu Kapitel 10.- 11 Analyse stochastischer linearer zeitinvarianter dynamischer Systeme im Frequenzbereich.- 11.1 Problemstellung.- 11.2 Spektrum des Ausgangsvektors.- 11.3 Dezibel-Skala für Spektren.- 11.4 Beispiele.- 11.5 Literatur zu Kapitel 11.- 11.6 Aufgaben zu Kapitel 11.- 12 Digitale Regelung.- 12.1 Grundsätzliche Funktionsweise.- 12.2 Signalabtastung.- 12.3 Signalrekonstruktion.- 12.4 Analyse zeitdiskreter linearer Systeme.- 12.5 Stochastik.- 12.6 Synthese zeitdiskreter Regler.- 12.7 Literatur zu Kapitel 12.- 12.8 Aufgaben zu Kapitel 12.- Lösungen zu den Aufgaben.- Anhang 1. Komplexe Zahlen.- Anhang 2. Bode-Diagramme.- Anhang 3. Lineare Algebra.- Anhang 4. Linearisierung eines nichtlinearen dynamischen Systems um eine Nominaltrajektorie herum.- Anhang 5. Wahrscheinlichkeitslehre.