110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
55 °P sammeln
  • Gebundenes Buch

This text is a comprehensive look at the current knowledge on stem cell application for vision loss, showcasing different types of stem cells (adult, embryonic, iPSCs) for diseases of the front and the back of the eye. It also highlights data obtained in various models from fish to human, as well as from the bionic eye project for vision regeneration. This volume in the Stem Cell Biology and Regenerative Medicine series is essential reading for stem cell biologists, ophthalmologists, advanced and graduate students, in addition to academics and medical staff who work in these disciplines.

Produktbeschreibung
This text is a comprehensive look at the current knowledge on stem cell application for vision loss, showcasing different types of stem cells (adult, embryonic, iPSCs) for diseases of the front and the back of the eye. It also highlights data obtained in various models from fish to human, as well as from the bionic eye project for vision regeneration. This volume in the Stem Cell Biology and Regenerative Medicine series is essential reading for stem cell biologists, ophthalmologists, advanced and graduate students, in addition to academics and medical staff who work in these disciplines.
Autorenporträt
Dr. Alice Pébay, Ph.D., is the principal investigator of the Neuroregeneration Unit at the Centre for Eye Research Australia, and a Senior Research Fellow in the Department of Ophthalmology at the University of Melbourne. She holds a Ph.D. in neuroscience and has extensive expertise in cell biology, having published more than 40 peer reviewed articles and chapters in the field of stem cell biology and lysophospholipid biology. Dr Pébay's current research focuses on the mechanisms that enable human pluripotent stem cells to maintain their pluripotency and allow them to differentiate towards specific retinal lineages. Dr Pébay also has comprehensive experience in neurotrauma research and a strong interest in the cellular mechanisms involved in the genetic disease, Friedreich Ataxia.