Pablo Raul Stinga
Regularity Techniques for Elliptic PDEs and the Fractional Laplacian
Pablo Raul Stinga
Regularity Techniques for Elliptic PDEs and the Fractional Laplacian
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian.
Andere Kunden interessierten sich auch für
- Shaowei SunOn normalized Laplacian eigenvalues of graphs44,99 €
- Sarfraz AhmadSequentially Cohen-Macaulay and Regularity of Monomial Ideals35,99 €
- Imran AnwarStanley Conjecture and Regularity on Monomial Ideals35,99 €
- Jean-Michel BismutHypoelliptic Laplacian and Bott¿Chern Cohomology81,99 €
- Friedrich KaschRegularity and Substructures of Hom53,45 €
- Sang-hyun KimStructure and Regularity of Group Actions on One-Manifolds95,99 €
- A³N²M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models95,99 €
-
-
-
This book presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 318
- Erscheinungstermin: 21. Juni 2024
- Englisch
- Abmessung: 254mm x 178mm
- Gewicht: 453g
- ISBN-13: 9781032679440
- ISBN-10: 1032679441
- Artikelnr.: 70150919
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 318
- Erscheinungstermin: 21. Juni 2024
- Englisch
- Abmessung: 254mm x 178mm
- Gewicht: 453g
- ISBN-13: 9781032679440
- ISBN-10: 1032679441
- Artikelnr.: 70150919
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Pablo Raúl Stinga earned his Licenciatura en Ciencias Matemáticas degree at Universidad Nacional de San Luis, in San Luis, Argentina (2005). He earned his Máster en Matemáticas y Aplicaciones (2007), and his Doctorado en Matemáticas Doctor Europeus under the direction of José L.Torrea at Universidad Aut¿noma de Madrid, Spain (2010). He held postdoctoral research positions at Universidad de Zaragoza, Spain (2010) and Universidad de La Rioja, Spain (2011-2012). During the period 2012-2015, he was the R.H. Bing Fellow in Mathematics No.1 Instructor at the University of Texas at Austin, USA, where he worked as a postdoctoral researcher under the supervision of Luis A. Caffarelli. He is currently Associate Professor at Iowa State University, USA. His research interests are in analysis, partial differential equations and nonlocal fractional equations.
1. Introduction. 1.1. Divergence Form Equations. 1.2. Nondivergence Form Equations. 1.3. Nonlocal Equations: The Fractional Laplacian. Section I. The Laplacian. 2. Harmonic Functions. 2.1. Definition and Examples. 2.2. The Mean Value Property and Smoothness. 2.3. Consequences of the Mean Value Property. 3. The Schauder estimates for the Laplacian. 3.1. Review of Fourier Transform. 3.2. The Poisson Equation: Ideas of the Method. 3.3. The Classical Heat Semigroup. 3.4. The Fundamental Solution of the Laplacian. 3.5. Solvability of the Poisson Equation. 3.6. Schauder Estimates by Representation Formulas. 3.7. Schauder Estimates by the Method of Maximum Principle. 4. The Calder
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.
1. Introduction. 1.1. Divergence Form Equations. 1.2. Nondivergence Form Equations. 1.3. Nonlocal Equations: The Fractional Laplacian. Section I. The Laplacian. 2. Harmonic Functions. 2.1. Definition and Examples. 2.2. The Mean Value Property and Smoothness. 2.3. Consequences of the Mean Value Property. 3. The Schauder estimates for the Laplacian. 3.1. Review of Fourier Transform. 3.2. The Poisson Equation: Ideas of the Method. 3.3. The Classical Heat Semigroup. 3.4. The Fundamental Solution of the Laplacian. 3.5. Solvability of the Poisson Equation. 3.6. Schauder Estimates by Representation Formulas. 3.7. Schauder Estimates by the Method of Maximum Principle. 4. The Calder
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.
n-Zygmund estimates for the Laplacian. 4.1. Solvability with Lp Right Hand Side. 4.2. L2 Estimate for Second Derivatives. 4.3. The Calder
n-Zygmund Theorem. 4.4. The BMO Space. 4.5. The John-Nirenberg Inequality. 4.6. Principal Value Representation of Second Derivatives. II. Divergence Form Equations. 5. The De Giorgi Theorem. 5.1. The De Giorgi Theorem. 5.2. L2 Implies L
. 5.3. L
Implies C
: De Giorgi's Geometric Proof. 5.4. L
Implies C
: Moser's Critical Density Proof. 6. The Moser Theorem. 6.1. The Moser Theorem. 6.2. Upper and Lower Bounds. 6.3. Closing the Gap. 6.4. Harnack Inequality Implies Hölder Regularity. 7. Perturbation theory for Divergence Form Equations. 7.1. Schauder Estimates. 7.2. Calder
n-Zygmund Estimates. Section III. Nondivergence Form Equations. 8. Viscosity Solutions and the ABP Estimate. 8.1 Nondivergence Form Equations. 8.2 Viscosity Solutions. 8.3. The Alexandroff-Bakelman-Pucci Estimate. 9. The Krylov-Safonov Harnack Inequality. 9.1. The Krylov-Safonov Harnack Inequality. 9.2 The Weak-L
Estimate for Supersolutions. 9.3. Subsolutions in Weak-L
are Bounded and Conclusion. 10. Savin's Method of Sliding Paraboloids. 10.1. Savin's Sliding Paraboloids for Harnack Inequality. 10.2. The Point-To-Measure Estimate for Supersolutions. 10.3. The Localization Lemma. 10.4. The Covering Lemma. 10.5. Conclusion: Proof of the Harnack Inequality. 11. Perturbation Theory for Nondivergence Form Equations. 11.1. Schauder Estimates. 11.2. Calder
n-Zygmund Estimates. Section IV. The Fractional Laplacian. 12. Basic Properties of the Fractional Laplacian. 12.1. Method of Semigroups and Pointwise Formulas. 12.2. Pointwise Limits. 12.3. Maximum and Comparison Principles. 12.4. The Inverse Fractional Laplacian. 12.5. Weak Solutions and Fractional Sobolev Spaces. 12.6. An Explicit Example. 12.7. Viscosity and Pointwise Solutions, Hölder Regularity. 13. Hölder and Schauder Estimates. 13.1 Hölder Estimates. 13.2 Schauder Estimates. 13.3 Regularity Estimates via the Method of Semigroups. 14. The Caffarelli-Silvestre Extension Problem. 14.1. The Extension Problem for (
)1/2 . 14.2. The Extension Problem for (
)s . 14.3. A Detour to Degenerate Elliptic Equations. 14.4. Applications to Regularity Estimates.