42,95 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

Diplomarbeit aus dem Jahr 2007 im Fachbereich VWL - Mikroökonomie, allgemein, Note: 1,7, Ruprecht-Karls-Universität Heidelberg (Alfred-Weber-Institut), Veranstaltung: Wirtschaftstheorie, Sprache: Deutsch, Abstract: Diese Arbeit untersucht den Einsatz agentenbasierter Lernalgorithmen im wiederholten Cournot-Spiel. Es werden zwei unterschiedliche Implementierungen (eine nach Roth-Erev, die andere nach Watkins Q-Learning) des sogenannten Reinforcement Learning untersucht. Diese Implementierungen werden in die Modellwelt des bekannten Cournot-Spiels gesetzt, um gegeneinander zu spielen. Es sind…mehr

Produktbeschreibung
Diplomarbeit aus dem Jahr 2007 im Fachbereich VWL - Mikroökonomie, allgemein, Note: 1,7, Ruprecht-Karls-Universität Heidelberg (Alfred-Weber-Institut), Veranstaltung: Wirtschaftstheorie, Sprache: Deutsch, Abstract: Diese Arbeit untersucht den Einsatz agentenbasierter Lernalgorithmen im wiederholten Cournot-Spiel. Es werden zwei unterschiedliche Implementierungen (eine nach Roth-Erev, die andere nach Watkins Q-Learning) des sogenannten Reinforcement Learning untersucht. Diese Implementierungen werden in die Modellwelt des bekannten Cournot-Spiels gesetzt, um gegeneinander zu spielen. Es sind Arbeiten bekannt, in denen Q-Learning Agengenten, kooperierendes Verhalten lernen. Es ist Ziel dieser Arbeit, die Unterschiede theoretisch herauszuarbeiten und praktisch in Java zu implementieren. Dabei soll die Frage geklärt werden, warum nur Q-Learning kooperierendes Verhalten erzeugt.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.