In addition to expanding and clarifying a number of sections of the first edition, it generalizes the analysis that eliminates the noncausal pre-acceleration so that it applies to removing any pre-deceleration as well. It also introduces a robust power series solution to the equation of motion that produces an extremely accurate solution to problems such as the motion of electrons in uniform magnetic fields.
In addition to expanding and clarifying a number of sections of the first edition, it generalizes the analysis that eliminates the noncausal pre-acceleration so that it applies to removing any pre-deceleration as well. It also introduces a robust power series solution to the equation of motion that produces an extremely accurate solution to problems such as the motion of electrons in uniform magnetic fields.
Arthur D. Yaghjian works primarily as a research engineer in the area of electromagnetic theory. His work has led to the determination of electric and magnetic fields in natural materials and metamaterials, as well as to the development of exact, numerical, and high-frequency methods for predicting and measuring the near and far fields of antennas and scatterers in both the time and frequency domains. His contributions to the determination of the classical equations of motion of accelerated charged particles have found recognition in a number of texts such as the latest edition of Jackson's "Classical Electrodynamics." He has published two books, several chapters in other books, and about 120 archival journal articles, four of which received IEEE best paper awards. He is an IEEE Life Fellow, has received an Honorary Doctorate from the Technical University of Denmark, the IEEE Electromagnetics Award, the IEEE-APS Distinguished Achievement Award, and has served as an IEEE-APS Distinguished Lecturer.
Inhaltsangabe
Foreword.- Preface To The First Edition.- Preface To The Second Edition.- Introduction and Summary of Results.- Lorentz-Abraham Force And Power Equations.- Derivation of Force And Power Equations.- Internal Binding Forces.- Electromagnetic, Electrostatic, Bare, Measured, and Insulator Masses.- Transformation and Redefinition of Forcepower and Momentum-Energy.- Momentum and Energy Relations.- Solutions to The Equation of Motion.- Derivation and Transformation of Smallvelocity Force and Power.- Derivation of Force and Power at Arbitrary Velocity.- Electric and Magnetic Fields in a Spherical Shell of Charge.- Derivation of The Linear Terms for the Self Electromagnetic Force.- References.
Chapter 1. Introduction and Summary of Results.- Chapter 2. Lorentz-Abraham Force and Power Equations.- Chapter 3. Derivation of Force and Power Equations.- Chapter 4. Internal Binding Forces.- Chapter 5. Electromagnetic, Electrostatic, Bare, Measured, and Insulator Masses.- Chapter 6. Transformation and Redefinition of Force-Power and Momentum-Energy.- Chapter 7. Momentum and Energy Relations.- Chapter 8. Solutions to the Equation of Motion.
Foreword.- Preface To The First Edition.- Preface To The Second Edition.- Introduction and Summary of Results.- Lorentz-Abraham Force And Power Equations.- Derivation of Force And Power Equations.- Internal Binding Forces.- Electromagnetic, Electrostatic, Bare, Measured, and Insulator Masses.- Transformation and Redefinition of Forcepower and Momentum-Energy.- Momentum and Energy Relations.- Solutions to The Equation of Motion.- Derivation and Transformation of Smallvelocity Force and Power.- Derivation of Force and Power at Arbitrary Velocity.- Electric and Magnetic Fields in a Spherical Shell of Charge.- Derivation of The Linear Terms for the Self Electromagnetic Force.- References.
Chapter 1. Introduction and Summary of Results.- Chapter 2. Lorentz-Abraham Force and Power Equations.- Chapter 3. Derivation of Force and Power Equations.- Chapter 4. Internal Binding Forces.- Chapter 5. Electromagnetic, Electrostatic, Bare, Measured, and Insulator Masses.- Chapter 6. Transformation and Redefinition of Force-Power and Momentum-Energy.- Chapter 7. Momentum and Energy Relations.- Chapter 8. Solutions to the Equation of Motion.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497