85,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
43 °P sammeln
  • Broschiertes Buch

Volume 1 of this three-part series introduces the fundamental concepts of quantum field theory using the formalism of canonical quantization. This volume is intended for use as a text for an introductory quantum field theory course that can include both particle and condensed matter physics students. Dr. Strickland starts with a brief review of classical field theory and uses this as a jumping off point for the quantization of classical field, thereby promoting them to proper quantum fields. He then presents the formalism for real and complex scalar field theories, fermion field quantization,…mehr

Produktbeschreibung
Volume 1 of this three-part series introduces the fundamental concepts of quantum field theory using the formalism of canonical quantization. This volume is intended for use as a text for an introductory quantum field theory course that can include both particle and condensed matter physics students. Dr. Strickland starts with a brief review of classical field theory and uses this as a jumping off point for the quantization of classical field, thereby promoting them to proper quantum fields. He then presents the formalism for real and complex scalar field theories, fermion field quantization, gauge field quantization, toy models of the nuclear interaction, and finally the full Lagrangian for QED and its renormalization. Part of IOP Series in Nuclear Medicine.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Strickland is a professor of physics at Kent State University. His primary interest is the physics of the quark-gluon plasma (QGP) and high-temperature quantum field theory (QFT). The QGP is predicted by quantum chromodynamics (QCD) to have existed until approximately 10-5seconds after the big bang. Dr. Strickland has published research papers on various topics related to the QGP, quantum field theory, relativistic hydrodynamics, and many other topics. In addition, he has co-written a classic text on the physics of neural networks.