79,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
Melden Sie sich für den Produktalarm an, um über die Verfügbarkeit des Produkts informiert zu werden.

  • Broschiertes Buch

Volume 3 of this three-part series presents more advanced topics and applications of relativistic quantum field theory. The application of quantum chromodynamics to high-energy particle scattering is discussed with concrete examples for how to compute QCD scattering cross sections. Experimental evidence for the existence of quarks and gluons is then presented both within the context of the naive quark model and beyond. Dr Strickland then reviews our current understanding of the weak interaction, the unified electroweak theory, and the Brout-Higgs-Englert mechanism for the generation of gauge…mehr

Produktbeschreibung
Volume 3 of this three-part series presents more advanced topics and applications of relativistic quantum field theory. The application of quantum chromodynamics to high-energy particle scattering is discussed with concrete examples for how to compute QCD scattering cross sections. Experimental evidence for the existence of quarks and gluons is then presented both within the context of the naive quark model and beyond. Dr Strickland then reviews our current understanding of the weak interaction, the unified electroweak theory, and the Brout-Higgs-Englert mechanism for the generation of gauge boson masses. The last two chapters contain a self-contained introduction to finite temperature quantum field theory with concrete examples focusing on the high-temperature thermodynamics of scalar field theories, QED, and QCD.
Autorenporträt
Dr. Strickland is a professor of physics at Kent State University. His primary interest is the physics of the quark-gluon plasma (QGP) and high-temperature quantum field theory (QFT). The QGP is predicted by quantum chromodynamics (QCD) to have existed until approximately 10-5seconds after the big bang. Dr. Strickland has published research papers on various topics related to the QGP, quantum field theory, relativistic hydrodynamics, and many other topics. In addition, he has co-written a classic text on the physics of neural networks.