The Nobel Prize-winning scientist's presentation of his landmark theory According to Einstein himself, this book is intended ?to give an exact insight into the theory of Relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics.? When he wrote the book in 1916, Einstein's name was scarcely known outside the physics institutes. Having just completed his masterpiece, "The General Theory of Relativity"?which provided a brand-new theory of gravity and…mehr
The Nobel Prize-winning scientist's presentation of his landmark theory According to Einstein himself, this book is intended ?to give an exact insight into the theory of Relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics.? When he wrote the book in 1916, Einstein's name was scarcely known outside the physics institutes. Having just completed his masterpiece, "The General Theory of Relativity"?which provided a brand-new theory of gravity and promised a new perspective on the cosmos as a whole?he set out at once to share his excitement with as wide a public as possible in this popular and accessible book.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Albert Einstein (1879-1955), one of the greatest thinkers of the twentieth century, was born in Ulm, Germany, to German-Jewish parents. He published his first great theories in Switzerland in the early 1900s while working as a patent clerk. Nigel Calder, educated as a physicist at Cambridge University, began his full-time writing career on the original staff of New Scientist magazine. His most recent book is the bestselling Einstein's Universe.
Inhaltsangabe
Relativity Introduction by Nigel Calder Suggestions for Further Reading Preface by Albert Einstein Part I: The Special Theory of Relativity 1. Physical Meaning of Geometrical Propositions 2. The System of Co-ordinates 3. Space and Time in Classical Mechanics 4. The Galileian System of Co-ordinates 5. The Principle of Relativity (in the Restricted Sense) 6. The Theorem of the Addition of Velocities Employed in Classical Mechanics 7. The Apparent Incompatibility of the Law of Propagation of Light with the Principle of Relativity 8. On the Idea of Time in Physics 9. The Relativity of Simultaneity 10. On the Relativity of the Conception of Distance 11. The Lorentz Transformation 12. The Behaviour of Measuring-Rods and Clocks in Motion 13. Theorem of the Addition of the Velocities. The Experiment of Fizeau 14. The Heuristic Value of the Theory of Relativity 15. General Results of the Theory 16. Experience and the Special Theory of Relativity 17. Minkowski's Four-Dimensional Space PartII: The General Theory of Relativity 18. Special and General Principle of Relativity 19. The Gravitational Field 20. The Equality of Inertial and Gravitational Mass as an Argument for the General Postulate of Relativity 21. In What Respects Are the Foundations of Classical Mechanics and of the Special Theory of Relativity Unsatisfactory? 22. A Few Inferences from the Genral Principle of Relativity 23. Behaviour of Clocks and Measuring-Rods on a Rotating Body of Reference 24. Euclidean and Non-Euclidean Continuum 25. Gaussian Co-ordinates 26. The Space-Time Continuum of the Special Theory of Relativity Considered as a Euclidean Continuum 27. The Space-Time Continuum of the General Theory of Relativity Is Not a Euclidean Continuum 28. Exact Formulation of the General Principle of Relativity 29. The Solution of the Problem of Gravitation on the Basis of the General Principle of Relativity Part III: Considerations on the Universe as a Whole 30. Cosmological Difficulties of Newton's Theory 31. The Possibility of a "Finite" and Yet "Unbounded" Universe 32. The Structure of Space According to the General Theory of Relativity Appendices 1. Simple Derivation of the Lorentz Transformation 2. Minkowski's Four-Dimensional Space ("World") 3. The Experimental Confirmation of the General Theory of Relativity (a) Motion of the Perihelion of Mercury (b) Deflection of Light by a Gravitational Field (c) Displacement of Spectral Lines towards the Red Index
Relativity Introduction by Nigel Calder Suggestions for Further Reading Preface by Albert Einstein Part I: The Special Theory of Relativity 1. Physical Meaning of Geometrical Propositions 2. The System of Co-ordinates 3. Space and Time in Classical Mechanics 4. The Galileian System of Co-ordinates 5. The Principle of Relativity (in the Restricted Sense) 6. The Theorem of the Addition of Velocities Employed in Classical Mechanics 7. The Apparent Incompatibility of the Law of Propagation of Light with the Principle of Relativity 8. On the Idea of Time in Physics 9. The Relativity of Simultaneity 10. On the Relativity of the Conception of Distance 11. The Lorentz Transformation 12. The Behaviour of Measuring-Rods and Clocks in Motion 13. Theorem of the Addition of the Velocities. The Experiment of Fizeau 14. The Heuristic Value of the Theory of Relativity 15. General Results of the Theory 16. Experience and the Special Theory of Relativity 17. Minkowski's Four-Dimensional Space PartII: The General Theory of Relativity 18. Special and General Principle of Relativity 19. The Gravitational Field 20. The Equality of Inertial and Gravitational Mass as an Argument for the General Postulate of Relativity 21. In What Respects Are the Foundations of Classical Mechanics and of the Special Theory of Relativity Unsatisfactory? 22. A Few Inferences from the Genral Principle of Relativity 23. Behaviour of Clocks and Measuring-Rods on a Rotating Body of Reference 24. Euclidean and Non-Euclidean Continuum 25. Gaussian Co-ordinates 26. The Space-Time Continuum of the Special Theory of Relativity Considered as a Euclidean Continuum 27. The Space-Time Continuum of the General Theory of Relativity Is Not a Euclidean Continuum 28. Exact Formulation of the General Principle of Relativity 29. The Solution of the Problem of Gravitation on the Basis of the General Principle of Relativity Part III: Considerations on the Universe as a Whole 30. Cosmological Difficulties of Newton's Theory 31. The Possibility of a "Finite" and Yet "Unbounded" Universe 32. The Structure of Space According to the General Theory of Relativity Appendices 1. Simple Derivation of the Lorentz Transformation 2. Minkowski's Four-Dimensional Space ("World") 3. The Experimental Confirmation of the General Theory of Relativity (a) Motion of the Perihelion of Mercury (b) Deflection of Light by a Gravitational Field (c) Displacement of Spectral Lines towards the Red Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826