158,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
79 °P sammeln
  • Gebundenes Buch

Proven 2D and 3D IC lead-free interconnect reliability techniques Reliability of RoHS-Compliant 2D and 3D IC Interconnects offers tested solutions to reliability problems in lead-free interconnects for PCB assembly, conventional IC packaging, 3D IC packaging, and 3D IC integration. This authoritative guide presents the latest cutting-edge reliability methods and data for electronic manufacturing services (EMS) on second-level interconnects, packaging assembly on first-level interconnects, and 3D IC integration on microbumps and through-silicon-via (TSV) interposers. Design reliable 2D and 3D…mehr

Produktbeschreibung
Proven 2D and 3D IC lead-free interconnect reliability techniques
Reliability of RoHS-Compliant 2D and 3D IC Interconnects offers tested solutions to reliability problems in lead-free interconnects for PCB assembly, conventional IC packaging, 3D IC packaging, and 3D IC integration. This authoritative guide presents the latest cutting-edge reliability methods and data for electronic manufacturing services (EMS) on second-level interconnects, packaging assembly on first-level interconnects, and 3D IC integration on microbumps and through-silicon-via (TSV) interposers. Design reliable 2D and 3D IC interconnects in RoHS-compliant projects using the detailed information in this practical resource.
Covers reliability of:
2D and 3D IC lead-free interconnects
CCGA, PBGA, WLP, PQFP, flip-chip, lead-free SAC solder joints
Lead-free (SACX) solder joints
Low-temperature lead-free (SnBiAg) solder joints
Solder joints with voids, high strain rate, and high ramp rate
VCSEL and LED lead-free interconnects
3D LED and 3D MEMS with TSVs
Chip-to-wafer (C2W) bonding and lead-free interconnects
Wafer-to-wafer (W2W) bonding and lead-free interconnects
3D IC chip stacking with low-temperature bonding
TSV interposers and lead-free interconnects
Electromigration of lead-free microbumps for 3D IC integration
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
John H. Lau received his Ph.D. degree in Theoretical and Applied Mechanics from the University of Illinois (1977), a M.A.Sc. degree in Structural Engineering from the University of British Columbia (1973), a second M.S. degree in Engineering Physics from the University of Wisconsin (1974), and a third M.S. degree in Management Science from Fairleigh Dickinson University (1981). He also has a B.E. degree in Civil Engineering from National Taiwan University (1970). John is an interconnection technology scientist at Agilent Technologies, Inc. His current interests cover a broad range of electronic and optoelectronic packaging and manufacturing technology. Prior to Agilent, he worked for Express Packaging Systems, Hewlett-Packard Company, Sandia National Laboratory, Bechtel Power Corporation, and Exxon Production and Research Company. With more than 30 years of R&D and manufacturing experience in the electronics, petroleum, nuclear, and defense industries, he has given over 200 workshops, authored and co-authored over 180 peer reviewed technical publications, and is the author and editor of 13 books: Solder Joint Reliability; Handbook of Tape Automated Bonding; Thermal Stress and Strain in Microelectronics Packaging; The Mechanics of Solder Alloy Interconnects; Handbook of Fine Pitch Surface Mount Technology; Chip On Board Technologies for Multichip Modules; Ball Grid Array Technology; Flip Chip Technologies; Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies; Electronics Packaging: Design, Materials, Process, and Reliability; Chip Scale Package (CSP): Design, Materials, Process, Reliability, and Applications; Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies, and Microvias for Low Cost, High Density Interconnects. John served as one of the associate editors of the IEEE Transactions on Components, Packaging, and Manufacturing Technology and ASME Transactions, Journal of Electronic Packaging. He also served as general chairman, program chairman, and session chairman, and invited speaker of several IEEE, ASME, ASM, MRS, IMAPS, SEMI, and SMI International conferences. He received a few awards from ASME and IEEE for best papers and outstanding technical achievements, and is an ASME Fellow and an IEEE Fellow. He is listed in American Men and Women of Science and Who's Who in America.