Remote Compositional Analysis
Herausgeber: Bishop, Janice L.; Moersch, Jeffrey E.; Bell III, James F.
Remote Compositional Analysis
Herausgeber: Bishop, Janice L.; Moersch, Jeffrey E.; Bell III, James F.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.
Andere Kunden interessierten sich auch für
- James M. EssigStaged Plasma Gas Compression Guns with Emphasis on Electron Plasma Modes for Facilitating Nuclear Fueling of Remote Relativistic Spacecraft.20,99 €
- Gerald R. HubbellRemote Observatories for Amateur Astronomers30,99 €
- An Introduction to Astrobiology63,99 €
- Fredric W. TaylorThe Scientific Exploration of Venus87,99 €
- Michael H. CarrThe Surface of Mars224,99 €
- Harry Y. Jr. McSweenMeteorites and Their Parent Planets62,99 €
- Gerald NorthObserving Variable Stars, Novae and Supernovae62,99 €
-
-
-
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 656
- Erscheinungstermin: 28. November 2019
- Englisch
- Abmessung: 250mm x 175mm x 39mm
- Gewicht: 1293g
- ISBN-13: 9781107186200
- ISBN-10: 110718620X
- Artikelnr.: 55314740
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 656
- Erscheinungstermin: 28. November 2019
- Englisch
- Abmessung: 250mm x 175mm x 39mm
- Gewicht: 1293g
- ISBN-13: 9781107186200
- ISBN-10: 110718620X
- Artikelnr.: 55314740
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Theory of Remote Compositional Analysis Techniques and Laboratory
Measurements: 1. Electronic spectra of minerals in the visible and
near-infrared regions; 2. Theory of reflectance and emittance spectroscopy
of geologic materials in the visible and infrared regions; 3. Mid-IR
(thermal) emission and reflectance spectroscopy: laboratory spectra of
geologic materials; 4. Visible and near-infrared reflectance spectroscopy:
laboratory spectra of geologic materials; 5. Visible and infrared
spectroscopy of ices, volatiles and organics; 6. Raman spectroscopy: theory
and laboratory spectra of geologic materials; 7. Mössbauer spectroscopy:
theory and laboratory spectra of geologic materials; 8. Laser-induced
breakdown spectroscopy: theory and laboratory spectra of geologic
materials; 9. Fundamentals of neutron, X-ray and gamma ray spectroscopy;
10. Radar remote sensing: theory and applications; Part II. Terrestrial
Field and Airborne Applications: 11. Visible and near-infrared reflectance
spectroscopy: field and airborne measurements; 12. Raman spectroscopy:
field measurements; Part III. Analysis Methods: 13. Effects of
environmental conditions on spectral measurements; 14. Hyper- and
multispectral VNIR imaging analysis; 15. Thermal infrared spectral
modeling; 16. Geochemical interpretations using multiple remote datasets;
Part IV. Applications to Planetary Surfaces: 17. Spectral analyses of
Mercury; 18. Compositional analysis of the Moon from the visible and
near-infrared; 19. Spectral analyses of asteroids; 20. VIS-NIR spectral
analyses of asteroids and comets from Dawn and Rosetta; 21. Spectral
analyses of Saturn's moons using Cassini-VIMS; 22. Spectroscopy of Pluto
and its satellites; 23. VSWIR spectral analyses of Mars from orbit using
CRISM and OMEGA; 24. Thermal infrared spectral analyses of Mars from orbit
using TES and THEMIS; 25. Rover-based thermal infrared remote sensing of
Mars using the mini-TES instrument; 26. Compositional and mineralogic
analyses of Mars using multispectral imaging on the Mars Exploration Rover,
Phoenix, and Mars Science Laboratory Missions; 27. Iron mineralogy,
oxidation state, and alteration on Mars from Mössbauer spectroscopy at
Gusev Crater and Meridiani Planum; 28. Elemental analyses of Mars using
APXS; 29. Elemental analyses of Mars with LIBS by ChemCam and SuperCam; 30.
X-ray, gamma-ray, and neutron spectroscopy: planetary missions; 31. Radar
remote sensing of planetary bodies.
Measurements: 1. Electronic spectra of minerals in the visible and
near-infrared regions; 2. Theory of reflectance and emittance spectroscopy
of geologic materials in the visible and infrared regions; 3. Mid-IR
(thermal) emission and reflectance spectroscopy: laboratory spectra of
geologic materials; 4. Visible and near-infrared reflectance spectroscopy:
laboratory spectra of geologic materials; 5. Visible and infrared
spectroscopy of ices, volatiles and organics; 6. Raman spectroscopy: theory
and laboratory spectra of geologic materials; 7. Mössbauer spectroscopy:
theory and laboratory spectra of geologic materials; 8. Laser-induced
breakdown spectroscopy: theory and laboratory spectra of geologic
materials; 9. Fundamentals of neutron, X-ray and gamma ray spectroscopy;
10. Radar remote sensing: theory and applications; Part II. Terrestrial
Field and Airborne Applications: 11. Visible and near-infrared reflectance
spectroscopy: field and airborne measurements; 12. Raman spectroscopy:
field measurements; Part III. Analysis Methods: 13. Effects of
environmental conditions on spectral measurements; 14. Hyper- and
multispectral VNIR imaging analysis; 15. Thermal infrared spectral
modeling; 16. Geochemical interpretations using multiple remote datasets;
Part IV. Applications to Planetary Surfaces: 17. Spectral analyses of
Mercury; 18. Compositional analysis of the Moon from the visible and
near-infrared; 19. Spectral analyses of asteroids; 20. VIS-NIR spectral
analyses of asteroids and comets from Dawn and Rosetta; 21. Spectral
analyses of Saturn's moons using Cassini-VIMS; 22. Spectroscopy of Pluto
and its satellites; 23. VSWIR spectral analyses of Mars from orbit using
CRISM and OMEGA; 24. Thermal infrared spectral analyses of Mars from orbit
using TES and THEMIS; 25. Rover-based thermal infrared remote sensing of
Mars using the mini-TES instrument; 26. Compositional and mineralogic
analyses of Mars using multispectral imaging on the Mars Exploration Rover,
Phoenix, and Mars Science Laboratory Missions; 27. Iron mineralogy,
oxidation state, and alteration on Mars from Mössbauer spectroscopy at
Gusev Crater and Meridiani Planum; 28. Elemental analyses of Mars using
APXS; 29. Elemental analyses of Mars with LIBS by ChemCam and SuperCam; 30.
X-ray, gamma-ray, and neutron spectroscopy: planetary missions; 31. Radar
remote sensing of planetary bodies.
Part I. Theory of Remote Compositional Analysis Techniques and Laboratory
Measurements: 1. Electronic spectra of minerals in the visible and
near-infrared regions; 2. Theory of reflectance and emittance spectroscopy
of geologic materials in the visible and infrared regions; 3. Mid-IR
(thermal) emission and reflectance spectroscopy: laboratory spectra of
geologic materials; 4. Visible and near-infrared reflectance spectroscopy:
laboratory spectra of geologic materials; 5. Visible and infrared
spectroscopy of ices, volatiles and organics; 6. Raman spectroscopy: theory
and laboratory spectra of geologic materials; 7. Mössbauer spectroscopy:
theory and laboratory spectra of geologic materials; 8. Laser-induced
breakdown spectroscopy: theory and laboratory spectra of geologic
materials; 9. Fundamentals of neutron, X-ray and gamma ray spectroscopy;
10. Radar remote sensing: theory and applications; Part II. Terrestrial
Field and Airborne Applications: 11. Visible and near-infrared reflectance
spectroscopy: field and airborne measurements; 12. Raman spectroscopy:
field measurements; Part III. Analysis Methods: 13. Effects of
environmental conditions on spectral measurements; 14. Hyper- and
multispectral VNIR imaging analysis; 15. Thermal infrared spectral
modeling; 16. Geochemical interpretations using multiple remote datasets;
Part IV. Applications to Planetary Surfaces: 17. Spectral analyses of
Mercury; 18. Compositional analysis of the Moon from the visible and
near-infrared; 19. Spectral analyses of asteroids; 20. VIS-NIR spectral
analyses of asteroids and comets from Dawn and Rosetta; 21. Spectral
analyses of Saturn's moons using Cassini-VIMS; 22. Spectroscopy of Pluto
and its satellites; 23. VSWIR spectral analyses of Mars from orbit using
CRISM and OMEGA; 24. Thermal infrared spectral analyses of Mars from orbit
using TES and THEMIS; 25. Rover-based thermal infrared remote sensing of
Mars using the mini-TES instrument; 26. Compositional and mineralogic
analyses of Mars using multispectral imaging on the Mars Exploration Rover,
Phoenix, and Mars Science Laboratory Missions; 27. Iron mineralogy,
oxidation state, and alteration on Mars from Mössbauer spectroscopy at
Gusev Crater and Meridiani Planum; 28. Elemental analyses of Mars using
APXS; 29. Elemental analyses of Mars with LIBS by ChemCam and SuperCam; 30.
X-ray, gamma-ray, and neutron spectroscopy: planetary missions; 31. Radar
remote sensing of planetary bodies.
Measurements: 1. Electronic spectra of minerals in the visible and
near-infrared regions; 2. Theory of reflectance and emittance spectroscopy
of geologic materials in the visible and infrared regions; 3. Mid-IR
(thermal) emission and reflectance spectroscopy: laboratory spectra of
geologic materials; 4. Visible and near-infrared reflectance spectroscopy:
laboratory spectra of geologic materials; 5. Visible and infrared
spectroscopy of ices, volatiles and organics; 6. Raman spectroscopy: theory
and laboratory spectra of geologic materials; 7. Mössbauer spectroscopy:
theory and laboratory spectra of geologic materials; 8. Laser-induced
breakdown spectroscopy: theory and laboratory spectra of geologic
materials; 9. Fundamentals of neutron, X-ray and gamma ray spectroscopy;
10. Radar remote sensing: theory and applications; Part II. Terrestrial
Field and Airborne Applications: 11. Visible and near-infrared reflectance
spectroscopy: field and airborne measurements; 12. Raman spectroscopy:
field measurements; Part III. Analysis Methods: 13. Effects of
environmental conditions on spectral measurements; 14. Hyper- and
multispectral VNIR imaging analysis; 15. Thermal infrared spectral
modeling; 16. Geochemical interpretations using multiple remote datasets;
Part IV. Applications to Planetary Surfaces: 17. Spectral analyses of
Mercury; 18. Compositional analysis of the Moon from the visible and
near-infrared; 19. Spectral analyses of asteroids; 20. VIS-NIR spectral
analyses of asteroids and comets from Dawn and Rosetta; 21. Spectral
analyses of Saturn's moons using Cassini-VIMS; 22. Spectroscopy of Pluto
and its satellites; 23. VSWIR spectral analyses of Mars from orbit using
CRISM and OMEGA; 24. Thermal infrared spectral analyses of Mars from orbit
using TES and THEMIS; 25. Rover-based thermal infrared remote sensing of
Mars using the mini-TES instrument; 26. Compositional and mineralogic
analyses of Mars using multispectral imaging on the Mars Exploration Rover,
Phoenix, and Mars Science Laboratory Missions; 27. Iron mineralogy,
oxidation state, and alteration on Mars from Mössbauer spectroscopy at
Gusev Crater and Meridiani Planum; 28. Elemental analyses of Mars using
APXS; 29. Elemental analyses of Mars with LIBS by ChemCam and SuperCam; 30.
X-ray, gamma-ray, and neutron spectroscopy: planetary missions; 31. Radar
remote sensing of planetary bodies.