74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

This book presents detailed descriptions of chaos for continuous-time systems. It is the first-ever book to consider chaos as an input for differential and hybrid equations. Chaotic sets and chaotic functions are used as inputs for systems with attractors: equilibrium points, cycles and tori. The findings strongly suggest that chaos theory can proceed from the theory of differential equations to a higher level than previously thought. The approach selected is conducive to the in-depth analysis of different types of chaos. The appearance of deterministic chaos in neural networks, economics and…mehr

Produktbeschreibung
This book presents detailed descriptions of chaos for continuous-time systems. It is the first-ever book to consider chaos as an input for differential and hybrid equations. Chaotic sets and chaotic functions are used as inputs for systems with attractors: equilibrium points, cycles and tori. The findings strongly suggest that chaos theory can proceed from the theory of differential equations to a higher level than previously thought. The approach selected is conducive to the in-depth analysis of different types of chaos. The appearance of deterministic chaos in neural networks, economics and mechanical systems is discussed theoretically and supported by simulations. As such, the book offers a valuable resource for mathematicians, physicists, engineers and economists studying nonlinear chaotic dynamics.
Autorenporträt
Prof. Dr. Marat Akhmet is a professor at the Department of Mathematics, Middle East Technical University, Ankara, Turkey. He is a specialist in dynamical models, chaos theory and differential equations. In the last several years, he has been investigating dynamics of neural networks, economic models and mechanical systems. Dr. Mehmet Onur Fen is a postdoctoral researcher at the Department of Mathematics, Middle East Technical University, Ankara, Turkey. His research interests are differential equations, chaos theory and applications to neural networks, economics and mechanical systems.
Rezensionen
"The book presents a systematized and organized exposition of this material, its contextualization within mathematics, science and technology, and a discussion of perspectives for future development. In summary, this monograph provides an overview of results on an aspect of the dynamics of chaotically driven differential equations, such as replication of chaos, which is an interesting issue that goes beyond the research on synchronization and control of chaos that has received so much attention in the last twenty five years." (Jesús M. González-Miranda, Mathematical Reviews, May, 2016)