One service mathematics has rendered the "Et moi, ... , si j'avait su comment en revenir, human race. It has put common sense back je n 'y serais point all
One service mathematics has rendered the "Et moi, ... , si j'avait su comment en revenir, human race. It has put common sense back je n 'y serais point allHinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
9: Special Functions Connected with SO(n) and with Related Groups.- 10: Representations of Groups, Related to SO(n ? 1), in Non-Canonical Bases, Special Functions, and Integral Transforms.- 11: Special Functions Connected with the Groups U(n), U(0?1,1) and IU(n ? 1).- 12: Representations of the Heisenberg Group and Special Functions.- 13: Representations of the Discrete Groups and Special Functions of Discrete Argument.
9: Special Functions Connected with SO(n) and with Related Groups.- 10: Representations of Groups, Related to SO(n ? 1), in Non-Canonical Bases, Special Functions, and Integral Transforms.- 11: Special Functions Connected with the Groups U(n), U(0?1,1) and IU(n ? 1).- 12: Representations of the Heisenberg Group and Special Functions.- 13: Representations of the Discrete Groups and Special Functions of Discrete Argument.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826