- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The primary goal of these lectures is to introduce a beginner to the finite-dimensional representations of Lie groups and Lie algebras. Intended to serve non-specialists, the concentration of the text is on examples. The general theory is developed sparingly, and then mainly as useful and unifying language to describe phenomena already encountered in concrete cases. The book begins with a brief tour through representation theory of finite groups, with emphasis determined by what is useful for Lie groups. The focus then turns to Lie groups and Lie algebras and finally to the heart of the…mehr
Andere Kunden interessierten sich auch für
- V. V. GorbatsevichLie Groups and Lie Algebras I83,99 €
- Glen E. BredonSheaf Theory47,99 €
- Yoshiaki Maeda / Peter Michor / Takushiro Ochiai / Akira Yoshioka (eds.)From Geometry to Quantum Mechanics117,69 €
- Joseph J. RotmanAn Introduction to Algebraic Topology51,99 €
- David L. JohnsonSymmetries29,99 €
- Joseph J. RotmanAn Introduction to Algebraic Topology47,99 €
- N. Christopher PhillipsEquivariant K-Theory and Freeness of Group Actions on C*-Algebras34,99 €
-
-
-
The primary goal of these lectures is to introduce a beginner to the finite-dimensional representations of Lie groups and Lie algebras. Intended to serve non-specialists, the concentration of the text is on examples. The general theory is developed sparingly, and then mainly as useful and unifying language to describe phenomena already encountered in concrete cases. The book begins with a brief tour through representation theory of finite groups, with emphasis determined by what is useful for Lie groups. The focus then turns to Lie groups and Lie algebras and finally to the heart of the course: working out the finite dimensional representations of the classical groups. The goal of the last portion of the book is to make a bridge between the example-oriented approach of the earlier parts and the general theory.
University of Michigan, Ann Arbor, MI, USA / Harvard University, Cambridge, MA, USA
Topological Groups, Lie Groups, Lie Algebra
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
University of Michigan, Ann Arbor, MI, USA / Harvard University, Cambridge, MA, USA
Topological Groups, Lie Groups, Lie Algebra
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York / Springer US
- Artikelnr. des Verlages: 10034297
- 2004
- Seitenzahl: 568
- Erscheinungstermin: 22. Oktober 1991
- Englisch
- Abmessung: 235mm x 155mm x 31mm
- Gewicht: 850g
- ISBN-13: 9783540974956
- ISBN-10: 3540974954
- Artikelnr.: 21576739
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Springer New York / Springer US
- Artikelnr. des Verlages: 10034297
- 2004
- Seitenzahl: 568
- Erscheinungstermin: 22. Oktober 1991
- Englisch
- Abmessung: 235mm x 155mm x 31mm
- Gewicht: 850g
- ISBN-13: 9783540974956
- ISBN-10: 3540974954
- Artikelnr.: 21576739
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I: Finite Groups.
1. Representations of Finite Groups.
§1.1: Definitions.
§1.2: Complete Reducibility; Schur's Lemma.
§1.3: Examples: Abelian Groups; $$ {\mathfrak{S}_3}$$.
2. Characters.
§2.1: Characters.
§2.2: The First Projection Formula and Its Consequences.
§2.3: Examples: $$ {\mathfrak{S}_4}$$ and $$ {\mathfrak{A}_4}$$.
§2.4: More Projection Formulas; More Consequences.
3. Examples; Induced Representations; Group Algebras; Real Representations.
§3.1: Examples: $$ {\mathfrak{S}_5}$$ and $$ {\mathfrak{A}_5}$$.
§3.2: Exterior Powers of the Standard Representation of $$ {\mathfrak{S}_d}$$.
§3.3: Induced Representations.
§3.4: The Group Algebra.
§3.5: Real Representations and Representations over Subfields of $$ \mathbb{C}$$.
4. Representations of: $$ {\mathfrak{S}_d}$$ Young Diagrams and Frobenius's Character Formula.
§4.1: Statements of the Results.
§4.2: Irreducible Representations of $$ {\mathfrak{S}_d}$$.
§4.3: Proof of Frobenius's Formula.
5. Representations of $$ {\mathfrak{A}_d}$$ and $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$.
§5.1: Representations of $$ {\mathfrak{A}_d}$$.
§5.2: Representations of $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$ and $$ S{L_2}\left( {{\mathbb{F}_q}} \right)$$.
6. Weyl's Construction.
§6.1: Schur Functors and Their Characters.
§6.2: The Proofs.
II: Lie Groups and Lie Algebras.
7. Lie Groups.
§7.1: Lie Groups: Definitions.
§7.2: Examples of Lie Groups.
§7.3: Two Constructions.
8. Lie Algebras and Lie Groups.
§8.1: Lie Algebras: Motivation and Definition.
§8.2: Examples of Lie Algebras.
§8.3: The Exponential Map.
9. Initial Classification of Lie Algebras.
§9.1: Rough Classification of Lie Algebras.
§9.2: Engel's Theorem and Lie's Theorem.
§9.3: Semisimple Lie Algebras.
§9.4: Simple Lie Algebras.
10. Lie Algebras in Dimensions One, Two, and Three.
§10.1: Dimensions One and Two.
§10.2: Dimension Three, Rank 1.
§10.3: Dimension Three, Rank 2.
§10.4: Dimension Three, Rank 3.
11. Representations of $$ \mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.
§11.1: The Irreducible Representations.
§11.2: A Little Plethysm.
§11.3: A Little Geometric Plethysm.
12. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part I.
13. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part II: Mainly Lots of Examples.
§13.1: Examples.
§13.2: Description of the Irreducible Representations.
§13.3: A Little More Plethysm.
§13.4: A Little More Geometric Plethysm.
III: The Classical Lie Algebras and Their Representations.
14. The General Set
up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra.
§14.1: Analyzing Simple Lie Algebras in General.
§14.2: About the Killing Form.
15. $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.1: Analyzing $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.2: Representations of $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.3: Weyl's Construction and Tensor Products.
§15.4: Some More Geometry.
§15.5: Representations of $$ G{L_n}\mathbb{C}$$.
16. Symplectic Lie Algebras.
§16.1: The Structure of $$ S{p_{2n}}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§16.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_4}\mathbb{C}$$.
17. $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§17.1: Representations of $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$.
§17.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$ in General.
§17.3: Weyl's Construction for Symplectic Groups.
18. Orthogonal Lie Algebras.
§18.1: $$ S{O_m}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§18.2: Representations of $$ \mathfrak{s}{\mathfrak{o}_3}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_4}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_5}\mathbb{C}$$.
19. $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§19.1: Representations of $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C}$$.
§19.2: Representations of the Even Orthogonal Algebras.
§19.3: Representations of $$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C}$$.
§19.4. Representations of the Odd Orthogonal Algebras.
§19.5: Weyl's Construction for Orthogonal Groups.
20. Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.1: Clifford Algebras and Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.2: The Spin Groups $$ Spi{n_m}\mathbb{C}$$ and $$ Spi{n_m}\mathbb{R}$$.
§20.3: $$ Spi{n_8}\mathbb{C}$$ and Triality.
IV: Lie Theory.
21. The Classification of Complex Simple Lie Algebras.
§21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras.
§21.2: Classifying Dynkin Diagrams.
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram.
22. $$ {g_2}$$and Other Exceptional Lie Algebras.
§22.1: Construction of $$ {g_2}$$ from Its Dynkin Diagram.
§22.2: Verifying That $$ {g_2}$$ is a Lie Algebra.
§22.3: Representations of $${{\mathfrak{g}}_{2}} $$.
§22.4: Algebraic Constructions of the Exceptional Lie Algebras.
23. Complex Lie Groups; Characters.
§23.1: Representations of Complex Simple Groups.
§23.2: Representation Rings and Characters.
§23.3: Homogeneous Spaces.
§23.4: Bruhat Decompositions.
24. Weyl Character Formula.
§24.1: The Weyl Character Formula.
§24.2: Applications to Classical Lie Algebras and Groups.
25. More Character Formulas.
§25.1: Freudenthal's Multiplicity Formula.
§25.2: Proof of (WCF); the Kostant Multiplicity Formula.
§25.3: Tensor Products and Restrictions to Subgroups.
26. Real Lie Algebras and Lie Groups.
§26.1: Classification of Real Simple Lie Algebras and Groups.
§26.2: Second Proof of Weyl's Character Formula.
§26.3: Real, Complex, and Quaternionic Representations.
Appendices.
A. On Symmetric Functions.
§A.1: Basic Symmetric Polynomials and Relations among Them.
§A.2: Proofs of the Determinantal Identities.
§A.3: Other Determinantal Identities.
B. On Multilinear Algebra.
§B.1: Tensor Products.
§B.2: Exterior and Symmetric Powers.
§B.3: Duals and Contractions.
C. On Semisimplicity.
§C.1: The Killing Form and Caftan's Criterion.
§C.2: Complete Reducibility and the Jordan Decomposition.
§C.3: On Derivations.
D. Cartan Subalgebras.
§D.1: The Existence of Cartan Subalgebras.
§D.2: On the Structure of Semisimple Lie Algebras.
§D.3: The Conjugacy of Cartan Subalgebras.
§D.4: On the Weyl Group.
E. Ado's and Levi's Theorems.
§E.1: Levi's Theorem.
§E.2: Ado's Theorem.
F. Invariant Theory for the Classical Groups.
§F.1: The Polynomial Invariants.
§F.2: Applications to Symplectic and Orthogonal Groups.
§F.3: Proof of Capelli's Identity.
Hints, Answers, and References.
Index of Symbols.
1. Representations of Finite Groups.
§1.1: Definitions.
§1.2: Complete Reducibility; Schur's Lemma.
§1.3: Examples: Abelian Groups; $$ {\mathfrak{S}_3}$$.
2. Characters.
§2.1: Characters.
§2.2: The First Projection Formula and Its Consequences.
§2.3: Examples: $$ {\mathfrak{S}_4}$$ and $$ {\mathfrak{A}_4}$$.
§2.4: More Projection Formulas; More Consequences.
3. Examples; Induced Representations; Group Algebras; Real Representations.
§3.1: Examples: $$ {\mathfrak{S}_5}$$ and $$ {\mathfrak{A}_5}$$.
§3.2: Exterior Powers of the Standard Representation of $$ {\mathfrak{S}_d}$$.
§3.3: Induced Representations.
§3.4: The Group Algebra.
§3.5: Real Representations and Representations over Subfields of $$ \mathbb{C}$$.
4. Representations of: $$ {\mathfrak{S}_d}$$ Young Diagrams and Frobenius's Character Formula.
§4.1: Statements of the Results.
§4.2: Irreducible Representations of $$ {\mathfrak{S}_d}$$.
§4.3: Proof of Frobenius's Formula.
5. Representations of $$ {\mathfrak{A}_d}$$ and $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$.
§5.1: Representations of $$ {\mathfrak{A}_d}$$.
§5.2: Representations of $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$ and $$ S{L_2}\left( {{\mathbb{F}_q}} \right)$$.
6. Weyl's Construction.
§6.1: Schur Functors and Their Characters.
§6.2: The Proofs.
II: Lie Groups and Lie Algebras.
7. Lie Groups.
§7.1: Lie Groups: Definitions.
§7.2: Examples of Lie Groups.
§7.3: Two Constructions.
8. Lie Algebras and Lie Groups.
§8.1: Lie Algebras: Motivation and Definition.
§8.2: Examples of Lie Algebras.
§8.3: The Exponential Map.
9. Initial Classification of Lie Algebras.
§9.1: Rough Classification of Lie Algebras.
§9.2: Engel's Theorem and Lie's Theorem.
§9.3: Semisimple Lie Algebras.
§9.4: Simple Lie Algebras.
10. Lie Algebras in Dimensions One, Two, and Three.
§10.1: Dimensions One and Two.
§10.2: Dimension Three, Rank 1.
§10.3: Dimension Three, Rank 2.
§10.4: Dimension Three, Rank 3.
11. Representations of $$ \mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.
§11.1: The Irreducible Representations.
§11.2: A Little Plethysm.
§11.3: A Little Geometric Plethysm.
12. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part I.
13. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part II: Mainly Lots of Examples.
§13.1: Examples.
§13.2: Description of the Irreducible Representations.
§13.3: A Little More Plethysm.
§13.4: A Little More Geometric Plethysm.
III: The Classical Lie Algebras and Their Representations.
14. The General Set
up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra.
§14.1: Analyzing Simple Lie Algebras in General.
§14.2: About the Killing Form.
15. $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.1: Analyzing $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.2: Representations of $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.3: Weyl's Construction and Tensor Products.
§15.4: Some More Geometry.
§15.5: Representations of $$ G{L_n}\mathbb{C}$$.
16. Symplectic Lie Algebras.
§16.1: The Structure of $$ S{p_{2n}}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§16.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_4}\mathbb{C}$$.
17. $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§17.1: Representations of $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$.
§17.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$ in General.
§17.3: Weyl's Construction for Symplectic Groups.
18. Orthogonal Lie Algebras.
§18.1: $$ S{O_m}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§18.2: Representations of $$ \mathfrak{s}{\mathfrak{o}_3}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_4}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_5}\mathbb{C}$$.
19. $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§19.1: Representations of $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C}$$.
§19.2: Representations of the Even Orthogonal Algebras.
§19.3: Representations of $$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C}$$.
§19.4. Representations of the Odd Orthogonal Algebras.
§19.5: Weyl's Construction for Orthogonal Groups.
20. Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.1: Clifford Algebras and Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.2: The Spin Groups $$ Spi{n_m}\mathbb{C}$$ and $$ Spi{n_m}\mathbb{R}$$.
§20.3: $$ Spi{n_8}\mathbb{C}$$ and Triality.
IV: Lie Theory.
21. The Classification of Complex Simple Lie Algebras.
§21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras.
§21.2: Classifying Dynkin Diagrams.
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram.
22. $$ {g_2}$$and Other Exceptional Lie Algebras.
§22.1: Construction of $$ {g_2}$$ from Its Dynkin Diagram.
§22.2: Verifying That $$ {g_2}$$ is a Lie Algebra.
§22.3: Representations of $${{\mathfrak{g}}_{2}} $$.
§22.4: Algebraic Constructions of the Exceptional Lie Algebras.
23. Complex Lie Groups; Characters.
§23.1: Representations of Complex Simple Groups.
§23.2: Representation Rings and Characters.
§23.3: Homogeneous Spaces.
§23.4: Bruhat Decompositions.
24. Weyl Character Formula.
§24.1: The Weyl Character Formula.
§24.2: Applications to Classical Lie Algebras and Groups.
25. More Character Formulas.
§25.1: Freudenthal's Multiplicity Formula.
§25.2: Proof of (WCF); the Kostant Multiplicity Formula.
§25.3: Tensor Products and Restrictions to Subgroups.
26. Real Lie Algebras and Lie Groups.
§26.1: Classification of Real Simple Lie Algebras and Groups.
§26.2: Second Proof of Weyl's Character Formula.
§26.3: Real, Complex, and Quaternionic Representations.
Appendices.
A. On Symmetric Functions.
§A.1: Basic Symmetric Polynomials and Relations among Them.
§A.2: Proofs of the Determinantal Identities.
§A.3: Other Determinantal Identities.
B. On Multilinear Algebra.
§B.1: Tensor Products.
§B.2: Exterior and Symmetric Powers.
§B.3: Duals and Contractions.
C. On Semisimplicity.
§C.1: The Killing Form and Caftan's Criterion.
§C.2: Complete Reducibility and the Jordan Decomposition.
§C.3: On Derivations.
D. Cartan Subalgebras.
§D.1: The Existence of Cartan Subalgebras.
§D.2: On the Structure of Semisimple Lie Algebras.
§D.3: The Conjugacy of Cartan Subalgebras.
§D.4: On the Weyl Group.
E. Ado's and Levi's Theorems.
§E.1: Levi's Theorem.
§E.2: Ado's Theorem.
F. Invariant Theory for the Classical Groups.
§F.1: The Polynomial Invariants.
§F.2: Applications to Symplectic and Orthogonal Groups.
§F.3: Proof of Capelli's Identity.
Hints, Answers, and References.
Index of Symbols.
I: Finite Groups.
1. Representations of Finite Groups.
§1.1: Definitions.
§1.2: Complete Reducibility; Schur's Lemma.
§1.3: Examples: Abelian Groups; $$ {\mathfrak{S}_3}$$.
2. Characters.
§2.1: Characters.
§2.2: The First Projection Formula and Its Consequences.
§2.3: Examples: $$ {\mathfrak{S}_4}$$ and $$ {\mathfrak{A}_4}$$.
§2.4: More Projection Formulas; More Consequences.
3. Examples; Induced Representations; Group Algebras; Real Representations.
§3.1: Examples: $$ {\mathfrak{S}_5}$$ and $$ {\mathfrak{A}_5}$$.
§3.2: Exterior Powers of the Standard Representation of $$ {\mathfrak{S}_d}$$.
§3.3: Induced Representations.
§3.4: The Group Algebra.
§3.5: Real Representations and Representations over Subfields of $$ \mathbb{C}$$.
4. Representations of: $$ {\mathfrak{S}_d}$$ Young Diagrams and Frobenius's Character Formula.
§4.1: Statements of the Results.
§4.2: Irreducible Representations of $$ {\mathfrak{S}_d}$$.
§4.3: Proof of Frobenius's Formula.
5. Representations of $$ {\mathfrak{A}_d}$$ and $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$.
§5.1: Representations of $$ {\mathfrak{A}_d}$$.
§5.2: Representations of $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$ and $$ S{L_2}\left( {{\mathbb{F}_q}} \right)$$.
6. Weyl's Construction.
§6.1: Schur Functors and Their Characters.
§6.2: The Proofs.
II: Lie Groups and Lie Algebras.
7. Lie Groups.
§7.1: Lie Groups: Definitions.
§7.2: Examples of Lie Groups.
§7.3: Two Constructions.
8. Lie Algebras and Lie Groups.
§8.1: Lie Algebras: Motivation and Definition.
§8.2: Examples of Lie Algebras.
§8.3: The Exponential Map.
9. Initial Classification of Lie Algebras.
§9.1: Rough Classification of Lie Algebras.
§9.2: Engel's Theorem and Lie's Theorem.
§9.3: Semisimple Lie Algebras.
§9.4: Simple Lie Algebras.
10. Lie Algebras in Dimensions One, Two, and Three.
§10.1: Dimensions One and Two.
§10.2: Dimension Three, Rank 1.
§10.3: Dimension Three, Rank 2.
§10.4: Dimension Three, Rank 3.
11. Representations of $$ \mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.
§11.1: The Irreducible Representations.
§11.2: A Little Plethysm.
§11.3: A Little Geometric Plethysm.
12. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part I.
13. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part II: Mainly Lots of Examples.
§13.1: Examples.
§13.2: Description of the Irreducible Representations.
§13.3: A Little More Plethysm.
§13.4: A Little More Geometric Plethysm.
III: The Classical Lie Algebras and Their Representations.
14. The General Set
up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra.
§14.1: Analyzing Simple Lie Algebras in General.
§14.2: About the Killing Form.
15. $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.1: Analyzing $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.2: Representations of $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.3: Weyl's Construction and Tensor Products.
§15.4: Some More Geometry.
§15.5: Representations of $$ G{L_n}\mathbb{C}$$.
16. Symplectic Lie Algebras.
§16.1: The Structure of $$ S{p_{2n}}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§16.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_4}\mathbb{C}$$.
17. $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§17.1: Representations of $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$.
§17.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$ in General.
§17.3: Weyl's Construction for Symplectic Groups.
18. Orthogonal Lie Algebras.
§18.1: $$ S{O_m}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§18.2: Representations of $$ \mathfrak{s}{\mathfrak{o}_3}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_4}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_5}\mathbb{C}$$.
19. $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§19.1: Representations of $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C}$$.
§19.2: Representations of the Even Orthogonal Algebras.
§19.3: Representations of $$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C}$$.
§19.4. Representations of the Odd Orthogonal Algebras.
§19.5: Weyl's Construction for Orthogonal Groups.
20. Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.1: Clifford Algebras and Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.2: The Spin Groups $$ Spi{n_m}\mathbb{C}$$ and $$ Spi{n_m}\mathbb{R}$$.
§20.3: $$ Spi{n_8}\mathbb{C}$$ and Triality.
IV: Lie Theory.
21. The Classification of Complex Simple Lie Algebras.
§21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras.
§21.2: Classifying Dynkin Diagrams.
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram.
22. $$ {g_2}$$and Other Exceptional Lie Algebras.
§22.1: Construction of $$ {g_2}$$ from Its Dynkin Diagram.
§22.2: Verifying That $$ {g_2}$$ is a Lie Algebra.
§22.3: Representations of $${{\mathfrak{g}}_{2}} $$.
§22.4: Algebraic Constructions of the Exceptional Lie Algebras.
23. Complex Lie Groups; Characters.
§23.1: Representations of Complex Simple Groups.
§23.2: Representation Rings and Characters.
§23.3: Homogeneous Spaces.
§23.4: Bruhat Decompositions.
24. Weyl Character Formula.
§24.1: The Weyl Character Formula.
§24.2: Applications to Classical Lie Algebras and Groups.
25. More Character Formulas.
§25.1: Freudenthal's Multiplicity Formula.
§25.2: Proof of (WCF); the Kostant Multiplicity Formula.
§25.3: Tensor Products and Restrictions to Subgroups.
26. Real Lie Algebras and Lie Groups.
§26.1: Classification of Real Simple Lie Algebras and Groups.
§26.2: Second Proof of Weyl's Character Formula.
§26.3: Real, Complex, and Quaternionic Representations.
Appendices.
A. On Symmetric Functions.
§A.1: Basic Symmetric Polynomials and Relations among Them.
§A.2: Proofs of the Determinantal Identities.
§A.3: Other Determinantal Identities.
B. On Multilinear Algebra.
§B.1: Tensor Products.
§B.2: Exterior and Symmetric Powers.
§B.3: Duals and Contractions.
C. On Semisimplicity.
§C.1: The Killing Form and Caftan's Criterion.
§C.2: Complete Reducibility and the Jordan Decomposition.
§C.3: On Derivations.
D. Cartan Subalgebras.
§D.1: The Existence of Cartan Subalgebras.
§D.2: On the Structure of Semisimple Lie Algebras.
§D.3: The Conjugacy of Cartan Subalgebras.
§D.4: On the Weyl Group.
E. Ado's and Levi's Theorems.
§E.1: Levi's Theorem.
§E.2: Ado's Theorem.
F. Invariant Theory for the Classical Groups.
§F.1: The Polynomial Invariants.
§F.2: Applications to Symplectic and Orthogonal Groups.
§F.3: Proof of Capelli's Identity.
Hints, Answers, and References.
Index of Symbols.
1. Representations of Finite Groups.
§1.1: Definitions.
§1.2: Complete Reducibility; Schur's Lemma.
§1.3: Examples: Abelian Groups; $$ {\mathfrak{S}_3}$$.
2. Characters.
§2.1: Characters.
§2.2: The First Projection Formula and Its Consequences.
§2.3: Examples: $$ {\mathfrak{S}_4}$$ and $$ {\mathfrak{A}_4}$$.
§2.4: More Projection Formulas; More Consequences.
3. Examples; Induced Representations; Group Algebras; Real Representations.
§3.1: Examples: $$ {\mathfrak{S}_5}$$ and $$ {\mathfrak{A}_5}$$.
§3.2: Exterior Powers of the Standard Representation of $$ {\mathfrak{S}_d}$$.
§3.3: Induced Representations.
§3.4: The Group Algebra.
§3.5: Real Representations and Representations over Subfields of $$ \mathbb{C}$$.
4. Representations of: $$ {\mathfrak{S}_d}$$ Young Diagrams and Frobenius's Character Formula.
§4.1: Statements of the Results.
§4.2: Irreducible Representations of $$ {\mathfrak{S}_d}$$.
§4.3: Proof of Frobenius's Formula.
5. Representations of $$ {\mathfrak{A}_d}$$ and $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$.
§5.1: Representations of $$ {\mathfrak{A}_d}$$.
§5.2: Representations of $$ G{L_2}\left( {{\mathbb{F}_q}} \right)$$ and $$ S{L_2}\left( {{\mathbb{F}_q}} \right)$$.
6. Weyl's Construction.
§6.1: Schur Functors and Their Characters.
§6.2: The Proofs.
II: Lie Groups and Lie Algebras.
7. Lie Groups.
§7.1: Lie Groups: Definitions.
§7.2: Examples of Lie Groups.
§7.3: Two Constructions.
8. Lie Algebras and Lie Groups.
§8.1: Lie Algebras: Motivation and Definition.
§8.2: Examples of Lie Algebras.
§8.3: The Exponential Map.
9. Initial Classification of Lie Algebras.
§9.1: Rough Classification of Lie Algebras.
§9.2: Engel's Theorem and Lie's Theorem.
§9.3: Semisimple Lie Algebras.
§9.4: Simple Lie Algebras.
10. Lie Algebras in Dimensions One, Two, and Three.
§10.1: Dimensions One and Two.
§10.2: Dimension Three, Rank 1.
§10.3: Dimension Three, Rank 2.
§10.4: Dimension Three, Rank 3.
11. Representations of $$ \mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.
§11.1: The Irreducible Representations.
§11.2: A Little Plethysm.
§11.3: A Little Geometric Plethysm.
12. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part I.
13. Representations of $$ \mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$ Part II: Mainly Lots of Examples.
§13.1: Examples.
§13.2: Description of the Irreducible Representations.
§13.3: A Little More Plethysm.
§13.4: A Little More Geometric Plethysm.
III: The Classical Lie Algebras and Their Representations.
14. The General Set
up: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra.
§14.1: Analyzing Simple Lie Algebras in General.
§14.2: About the Killing Form.
15. $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.1: Analyzing $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.2: Representations of $$ \mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.
§15.3: Weyl's Construction and Tensor Products.
§15.4: Some More Geometry.
§15.5: Representations of $$ G{L_n}\mathbb{C}$$.
16. Symplectic Lie Algebras.
§16.1: The Structure of $$ S{p_{2n}}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§16.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_4}\mathbb{C}$$.
17. $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.
§17.1: Representations of $$ \mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$.
§17.2: Representations of $$ \mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$ in General.
§17.3: Weyl's Construction for Symplectic Groups.
18. Orthogonal Lie Algebras.
§18.1: $$ S{O_m}\mathbb{C}$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§18.2: Representations of $$ \mathfrak{s}{\mathfrak{o}_3}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_4}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_5}\mathbb{C}$$.
19. $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$ and $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§19.1: Representations of $$ \mathfrak{s}{\mathfrak{o}_6}\mathbb{C}$$.
§19.2: Representations of the Even Orthogonal Algebras.
§19.3: Representations of $$ \mathfrak{s}{\mathfrak{o}_7}\mathbb{C}$$.
§19.4. Representations of the Odd Orthogonal Algebras.
§19.5: Weyl's Construction for Orthogonal Groups.
20. Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.1: Clifford Algebras and Spin Representations of $$ \mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.
§20.2: The Spin Groups $$ Spi{n_m}\mathbb{C}$$ and $$ Spi{n_m}\mathbb{R}$$.
§20.3: $$ Spi{n_8}\mathbb{C}$$ and Triality.
IV: Lie Theory.
21. The Classification of Complex Simple Lie Algebras.
§21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras.
§21.2: Classifying Dynkin Diagrams.
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram.
22. $$ {g_2}$$and Other Exceptional Lie Algebras.
§22.1: Construction of $$ {g_2}$$ from Its Dynkin Diagram.
§22.2: Verifying That $$ {g_2}$$ is a Lie Algebra.
§22.3: Representations of $${{\mathfrak{g}}_{2}} $$.
§22.4: Algebraic Constructions of the Exceptional Lie Algebras.
23. Complex Lie Groups; Characters.
§23.1: Representations of Complex Simple Groups.
§23.2: Representation Rings and Characters.
§23.3: Homogeneous Spaces.
§23.4: Bruhat Decompositions.
24. Weyl Character Formula.
§24.1: The Weyl Character Formula.
§24.2: Applications to Classical Lie Algebras and Groups.
25. More Character Formulas.
§25.1: Freudenthal's Multiplicity Formula.
§25.2: Proof of (WCF); the Kostant Multiplicity Formula.
§25.3: Tensor Products and Restrictions to Subgroups.
26. Real Lie Algebras and Lie Groups.
§26.1: Classification of Real Simple Lie Algebras and Groups.
§26.2: Second Proof of Weyl's Character Formula.
§26.3: Real, Complex, and Quaternionic Representations.
Appendices.
A. On Symmetric Functions.
§A.1: Basic Symmetric Polynomials and Relations among Them.
§A.2: Proofs of the Determinantal Identities.
§A.3: Other Determinantal Identities.
B. On Multilinear Algebra.
§B.1: Tensor Products.
§B.2: Exterior and Symmetric Powers.
§B.3: Duals and Contractions.
C. On Semisimplicity.
§C.1: The Killing Form and Caftan's Criterion.
§C.2: Complete Reducibility and the Jordan Decomposition.
§C.3: On Derivations.
D. Cartan Subalgebras.
§D.1: The Existence of Cartan Subalgebras.
§D.2: On the Structure of Semisimple Lie Algebras.
§D.3: The Conjugacy of Cartan Subalgebras.
§D.4: On the Weyl Group.
E. Ado's and Levi's Theorems.
§E.1: Levi's Theorem.
§E.2: Ado's Theorem.
F. Invariant Theory for the Classical Groups.
§F.1: The Polynomial Invariants.
§F.2: Applications to Symplectic and Orthogonal Groups.
§F.3: Proof of Capelli's Identity.
Hints, Answers, and References.
Index of Symbols.