An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Alexei Borodin is a Professor of Mathematics at the Massachusetts Institute of Technology.
Inhaltsangabe
Introduction; Part I. Symmetric Functions and Thoma's Theorem: 1. Preliminary facts from representation theory of finite symmetric groups; 2. Theory of symmetric functions; 3. Coherent systems on the Young graph; 4. Extreme characters and Thoma's Theorem; 5. A toy model (the Pascal Graph) and de Finetti's Theorem; 6. Asymptotics of relative dimension in the Young graph; 7. Boundaries and Gibbs measures on paths; Part II. Unitary Representations: 8. Preliminaries and Gelfand pairs; 9. Classification of general spherical type representations; 10. Realization of irreducible spherical representations of (S( ) × S( ), diagS( )); 11. Generalized regular representations Tz; 12. Disjointness of representations Tz; References; Index.
Introduction; Part I. Symmetric Functions and Thoma's Theorem: 1. Preliminary facts from representation theory of finite symmetric groups; 2. Theory of symmetric functions; 3. Coherent systems on the Young graph; 4. Extreme characters and Thoma's Theorem; 5. A toy model (the Pascal Graph) and de Finetti's Theorem; 6. Asymptotics of relative dimension in the Young graph; 7. Boundaries and Gibbs measures on paths; Part II. Unitary Representations: 8. Preliminaries and Gelfand pairs; 9. Classification of general spherical type representations; 10. Realization of irreducible spherical representations of (S( ) × S( ), diagS( )); 11. Generalized regular representations Tz; 12. Disjointness of representations Tz; References; Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826