This book constitutes the refereed proceedings of the first MICCAI Workshop on Resource-Efficient Medical Image Analysis, REMIA 2022, held in conjunction with MICCAI 2022, in September 2022 as a hybrid event. REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations.
This book constitutes the refereed proceedings of the first MICCAI Workshop on Resource-Efficient Medical Image Analysis, REMIA 2022, held in conjunction with MICCAI 2022, in September 2022 as a hybrid event.
REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations.
Multi-Task Semi-Supervised Learning for Vascular Network.- Segmentation and Renal Cell Carcinoma Classification.- Self-supervised Antigen Detection Artificial Intelligence (SANDI).- RadTex: Learning Effcient Radiograph Representations from Text Reports.- Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification.- Triple-View Feature Learning for Medical Image Segmentation.- Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Effciency.- An Effcient Defending Mechanism Against Image Attacking On Medical Image Segmentation Models.- Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Analysis via a Simple and Low-cost Joint Representation Tuning.- Pathological Image Contrastive Self-Supervised Learning.- Investigation of Training Multiple Instance Learning Networks with Instance Sampling.- Masked Video Modeling with Correlation-aware Contrastive Learning for Breast Cancer Diagnosis in Ultrasound.- A self-attentive meta-learning approach for image-based few-shot disease detection.- Facing Annotation Redundancy: OCT Layer Segmentation with Only 10 Annotated Pixels Per Layer.
Multi-Task Semi-Supervised Learning for Vascular Network.- Segmentation and Renal Cell Carcinoma Classification.- Self-supervised Antigen Detection Artificial Intelligence (SANDI).- RadTex: Learning Effcient Radiograph Representations from Text Reports.- Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification.- Triple-View Feature Learning for Medical Image Segmentation.- Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Effciency.- An Effcient Defending Mechanism Against Image Attacking On Medical Image Segmentation Models.- Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Analysis via a Simple and Low-cost Joint Representation Tuning.- Pathological Image Contrastive Self-Supervised Learning.- Investigation of Training Multiple Instance Learning Networks with Instance Sampling.- Masked Video Modeling with Correlation-aware Contrastive Learning for Breast Cancer Diagnosis in Ultrasound.- A self-attentive meta-learning approach for image-based few-shot disease detection.- Facing Annotation Redundancy: OCT Layer Segmentation with Only 10 Annotated Pixels Per Layer.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497