Additive manufacturing, considered an advanced production method, has transformed the creation of highly functional prototypes, overcoming limitations of traditional engineering approaches in achieving innovation, profitability, and industrial-scale production. The escalating global population, contemporary lifestyles, and resource constraints underscore the urgent need for reliable energy sources. In response, additive manufacturing emerges as a solution for producing 3D energy storage devices with maintained functional characteristics like surface area and conductivity. The development of future-generation energy devices requires dedicated nanostructures with predictable engineering measures, and accurate 3D printing proves instrumental in producing effective three-dimensional nanomaterials for optimal performance.