High Quality Content by WIKIPEDIA articles! In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the amount by which the volume element of a geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space. As such, it provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n-space. More generally, the Ricci tensor is defined on any pseudo-Riemannian manifold. Like the metric itself, the Ricci tensor is a symmetric bilinear form on the tangent space of the manifold.