30,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert…mehr

Produktbeschreibung
Using the example of a complicated problem such as the Cauchy problem for the Navier--Stokes equation, we show how the Poincare--Riemann--Hilbert boundary-value problem enables us to construct effective estimates of solutions for this case. The apparatus of the three-dimensional inverse problem of quantum scattering theory is developed for this. It is shown that the unitary scattering operator can be studied as a solution of the Poincare-Riemann--Hilbert boundary-value problem. The same scheme of reduction of Riemann integral equations for the zeta function to the Poincare--Riemann--Hilbert boundary-value problem allows us to construct effective estimates that describe the behaviour of the zeros of the zeta function very well.
Autorenporträt
Dr. Asset Durmagambetov - Dyrektor naukowy Instytutu Technologii Informacyjnych i Komputerowych MI¿DZYNARODOWEJ NAUKI COMPLEX "ASTANA". Wyksztäcenie: 1987 r., doktorat (fizyczno-matematyczny, 01.01.02 - równania ró¿niczkowe), Instytut Matematyczny Akademii Nauk Republiki Kazachstanu, A¿maty, (U.S.S.R.)