108,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

How can a robot decide what motions to perform in order to achieve tasks in the physical world? Robot motion planning encompasses several different disciplines, most notably robotics, computer science, control theory and mathematics. This volume presents an interdisciplinary account of recent developments in the field. Topics covered include: combining geometric algorithms and control techniques to account for the nonholonomic constraints of most mobile robots; the mathematical machinery necessary for understanding nonholonomic systems; applying optimal techniques to compute optimal paths;…mehr

Produktbeschreibung
How can a robot decide what motions to perform in order to achieve tasks in the physical world? Robot motion planning encompasses several different disciplines, most notably robotics, computer science, control theory and mathematics. This volume presents an interdisciplinary account of recent developments in the field. Topics covered include: combining geometric algorithms and control techniques to account for the nonholonomic constraints of most mobile robots; the mathematical machinery necessary for understanding nonholonomic systems; applying optimal techniques to compute optimal paths; feedback control for nonholonomic mobile robots; probabilistic algorithms and new motion planning approaches; and a survey of recent techniques for dealing with collision detection.